СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа элективного курса "Математика абитуриенту"

Категория: Математика

Нажмите, чтобы узнать подробности

Элективный курс "Математика абитуриенту" рассчитан на 17 часов. Данная программа курса сможет привлечь внимание учащихся, которым интересна математика, кому она понадобится при учебе, подготовке к ЕГЭ.

Просмотр содержимого документа
«Рабочая программа элективного курса "Математика абитуриенту"»



















Рабочая программа

элективного курса по математике


" Математика абитуриенту "


10 класс

























Пояснительная записка

Рабочая программа элективного курса по математике в 10 классе «Математика абитуриенту» составлена на основании следующих нормативно-правовых документов:

  1. Федерального компонента государственного стандарта основного общего образования по математике, утвержденного приказом Минобразования России от 5.03.2004 г. № 1089.

  2. Законом Российской Федерации «Об образовании».

  3. Учебного плана МКОУ Гвазденская СОШ на 2018-2019 учебный год.

Главная цель предлагаемой программы заключается не только в подготовке к вступительному экзамену, и в овладении определённым объём знаний, готовых методов решения нестандартных задач, но и в том, чтобы научить самостоятельно мыслить, творчески подходить к любой проблеме.

Элективный курс "Математика абитуриенту" рассчитан на 17 часов. Данная программа курса сможет привлечь внимание учащихся, которым интересна математика, кому она понадобится при учебе, подготовке к ЕГЭ.

Данный курс имеет прикладное и общеобразовательное значение, способствует развитию логического мышления учащихся, систематизации знаний при подготовке к выпускным экзаменам. Используются различные формы организации занятий, такие как лекция и семинар, групповая, индивидуальная деятельность учащихся. Результатом предложенного курса должна быть успешная сдача ЕГЭ.


Цели курса:

  • Создание условий для формирования и развития у обучающихся навыков анализа и систематизации, полученных ранее знаний; подготовка к итоговой аттестации в форме ЕГЭ.

  • Совершенствование математической культуры и творческие способности учащихся. Расширение и углубление знаний, полученных при изучении курса математики за 5-9 класс .

  • Закрепление теоретических знаний; развитие практических навыков и умений. Умение применять полученные навыки при решении нестандартных задач в других дисциплинах.


Задачи курса:

  • Реализовать индивидуализации обучения; удовлетворить образовательные потребности школьников по алгебре. Формировать устойчивого интереса учащихся к предмету.

  • Выявить и развить их математических способностей.

  • Подготовить к обучению в ВУЗе.

  • Обеспечить усвоения обучающимися наиболее общих приемов и способов решения задач. Развить умений самостоятельно анализировать и решать задачи по образцу и в незнакомой ситуации;

  • Расширить математические представления учащихся по определённым темам, включённым в программы вступительных экзаменов в другие типы учебных заведений.

  • Развить коммуникативные и общеучебные навыков, навыков самостоятельной работы, умений вести дискуссию, аргументировать ответы.


Виды деятельности на занятиях: лекция учителя, беседа, практикум, консультация.


Умения и навыки учащихся, формируемые элективным курсом:

  • навык самостоятельной работы с таблицами и справочной литературой;

  • составление алгоритмов решения типичных для ЕГЭ задач;

  • умения решения тригонометрических, показательных уравнений и неравенств;

  • исследования элементарных функций при решения задач различных типов заданий ЕГЭ.


Требования к уровню подготовки

  • Выполнение практических занятий имеет целью закрепить у учащихся теоретические знания и развить практические навыки и умения в области алгебры, и успешной сдачи ЕГЭ по математике.

  • Учащиеся должны знать, что такое проценты и сложные проценты, основное свойство пропорции.

  • Знать схему решения линейных, квадратных, дробно-рациональных, иррациональных уравнений.

  • Знать способы решения систем уравнений.

  • Знать определение параметра; примеры уравнений с параметром; основные типы задач с параметрами; основные способы решения задач с параметрами. Знать определение линейного уравнения и неравенства с параметрами. Алгоритмы решения линейных уравнений и неравенств с параметрами графическим способом. Определение квадратного уравнения и неравенства с параметрами. Алгоритмы решения квадратного уравнения и неравенства с параметрами графическим способом

  • проводить тождественные преобразования иррациональных, показательных, тригонометрических выражений.

  • решать иррациональные, тригонометрические уравнения и неравенства.

  • решать системы уравнений изученными методами.

  • строить графики элементарных функций и проводить преобразования графиков, используя изученные методы.

  • применять аппарат математического анализа к решению задач.

  • Уметь применять вышеуказанные знания на практике.





 


















Содержание

Тема 1. Текстовые задачи (3 часа)

Простейшие текстовые задачи. Основные свойства, прямо и обратно пропорциональные величины. Проценты, округление с избытком, округление с недостатком. Выбор оптимального варианта. Выбор варианта из двух возможных Выбор варианта из трех возможных Выбор варианта из четырех возможных. Текстовые задачи на проценты, сплавы и смеси, на движение, на совместную работу.

Тема 2. Тригонометрия (6 часов) 

Вычисление значений тригонометрических выражений. Преобразования числовых тригонометрических выражений. Преобразования буквенных тригонометрических выражений. Тригонометрические уравнения и неравенства. Простейшие тригонометрические уравнения. Два метода решения тригонометрических уравнений: введение новой переменной и разложение на множители. Однородные тригонометрические уравнения. Тригонометрические уравнения с параметрами.

Тема 3. Стереометрия (4 часа)

Призма, ее основания, боковые ребра, высота, боковая поверхность; прямая призма; правильная призма. Параллелепипед; куб; симметрии в кубе, в параллелепипеде. Пирамида, ее основание, боковые ребра, высота, боковая поверхность; треугольная пирамида; правильная пирамида. Сечения куба, призмы, пирамиды.

Величина угла, градусная мера угла, соответствие между величиной угла и длиной дуги окружности. Угол между прямыми в пространстве; угол между прямой и плоскостью, угол между плоскостями. Расстояние от точки до прямой, от точки до плоскости; расстояние между параллельными и скрещивающимися прямыми, расстояние между параллельными плоскостями. Площадь поверхности составного многогранника.

Тема 5. Производная (4 часа)

Понятие о производной функции, геометрический смысл производной. Физический смысл производной, нахождение скорости для процесса, заданного формулой или графиком. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Вторая производная и ее физический смысл. Исследование функций. Применение производной к исследованию функций и построению графиков. Наибольшее и наименьшее значение функций Исследование тригонометрических функций.





















Календарно – тематический план.



урока


Содержание материала


Кол-во часов

Дата проведения

план

факт


п1. Текстовые задачи

3



1

Задачи на выбор оптимального варианта.

1



2

Текстовые задачи на проценты и сплавы.

1



3

Текстовые задачи на движение и совместную работу

1




п2. Тригонометрия

6



4

Преобразование тригонометрических выражений (сумма и разность аргументов).

1



5

Преобразование тригонометрических выражений (сумма и произведение тригонометрических функций).

1



6

Тригонометрические уравнения, сводящиеся к квадратным

1



7

Однородные тригонометрические уравнения.

1



8

Тригонометрические уравнения и неравенства с параметрами.

1



9

Уравнения и неравенства, содержащие обратные тригонометрические функции.

1




п3. Стереометрия.

4



10

Параллелепипед, куб

1



11

Призма

1



12

Пирамида

1



13

Составные многогранники

1




п.5. Производная

4



14

Применение производной к исследованию   функций

1



15

Применение производной к исследованию   функций

1



16

Исследование тригонометрических функций

1



17

Исследование тригонометрических функций

1




ИТОГО:

17 часов



 

  



Учебно-методическое обеспечение

  1. Гольдич В.А. Алгебра. Решение уравнений и неравенств. - СПб.: Литера, 2008

  2. Маретиалы ЕГЭ, допущенные ФИПИ 2013 -2014 г.

  3. Шарыгин И.Ф. Факультативный курс по математике. Решение задач – М. – «Просвещение» 2008.

  4. Шахместер А.Х. Задачи с параметрами в ЕГЭ.- С.-Петербург, Москва, изд. Московского университета Черо на Неве МЦНМО, 2004.