Муниципальное образование «Иволгинский район»
«Муниципальное общеобразовательное учреждение
средняя общеобразовательная школа Поселья»
«Рассмотрено» Руководитель МО Басурманова О.Л ______________ Протокол № __ от «_____»__________202__г. | «Согласовано» Заместитель директора по УВР МОУ «СОШ Поселья»: ____________Цыдыпова Г.Р «____» __________ 202___г. | «Утверждено» Директор МОУ «СОШ Поселья» ____________Ширапов Б.К Приказ №____ от «____» ________ 202__г. |
РАБОЧАЯ ПРОГРАММА
учебного предмета «Алгебра»
Класс: 7-а
Уровень образования – основное общее образование
Уровень изучения предмета – базовый уровень
Срок реализации программы – 2021/2022 учебный год
Количество часов по учебному предмету:3 ч./неделю, всего – 102ч/год
Рабочую программу составил(ла): Г.В Буянтуева, учитель математики
Поселье,
2021 г.
Пояснительная записка
Рабочая программа составлена на основе:
Закон ФЗ №273 от 29.12.2012 «Об образовании в Российской Федерации»;
Федеральный государственный стандарт основного общего образования (Приказ МОиН №1897 от 17 декабря 2010 зарегистрирован Минюст №1944 от 01 февраля 2011);
Приказ Министерства образования и науки РФ №1644 от 29.12.2014. О внесении изменений в приказ Министерства образования и науки РФ от 17 декабря 2010 №1897 «Об утверждении ФГОС ООО» (зарегистрирован в Минюст №35915 от 06.02.2015);
Авторской программы по алгебре 7 класс: А. Г. Мерзляк;
Учебный план «МОУ СОШ Поселья»;
Образовательная программа «МОУ СОШ Поселья»;
Федерального перечня учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утверждённого Приказом Министерства образования и науки РФ №253 от 31 марта 2014г (с изменениями).
Ориентирована на работу по учебно-методическому комплекту:
Для реализации программы используется УМК:
Мерзляк А. Г. Алгебра: 7 класс: учебник для учащихся общеобразовательных организаций / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М.: Вентана-Граф, 2020. – 272 с.
Примерная программа рассчитана на 1 учебный год, конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Цели и задачи курса
Обучение математике в основной школе направлено на достижение следующих целей и задач:
1) в направлении личностного развития:
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
развитие интереса к математическому творчеству и математических способностей;
2) в метапредметном направлении:
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
3) в предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
Описание места учебного предмета в учебном плане
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры в 7 классе отводится 3 часа в неделю, общий объем 102 часа.
Четверть | Количество рабочих недель | Учебная нагрузка |
1 | 8 недель | 24 ч. |
2 | 7 недель | 22 ч. |
3 | 11 недель | 31 ч. |
4 | 8 недель | 25 ч. |
год | 34 недель | 102 ч. |
Описание ценностных ориентиров содержания учебного предмета
Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом.
Без базовой математической подготовки невозможна постановка образования современного человека.
В школе математика служит опорным предметом для изучения смежных дисциплин.
В после школьной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И, наконец, всё больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.).
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умение формулировать, обосновывать и доказывать суждения, тем самым развивая логическое мышление.
Использование в математике наряду с естественным нескольких математических языков дает возможность развивать у учащихся точную, экономную, информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические и графические) средства.
Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в её современном толковании является общее знакомство с методами познания действительности.
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представление о математике как части общечеловеческой культуры.
Результаты освоения учебного предмета
Изучение математики в основной школе дает возможность учащимся достичь следующих результатов развития:
в личностном направлении:
формирование ответственного отношения к учению, готовности и способности, обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
в метапредметном направлении:
умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовых связей;
умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способу работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;
формирование и развитие учебной и обще пользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, о средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
в предметном направлении:
овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, выражение, тождество, уравнение, функция) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
овладение навыками устных, письменных, инструментальных вычислений;
умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использование при необходимости справочных материалов, калькулятора, компьютера.
Содержание учебного предмета
Отбор содержания обучения осуществляется на основе следующих дидактических принципов: систематизация знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе; усиление общекультурной направленности материала; учёт психолого-педагогических особенностей, актуальных для этого возрастного периода; создание условий для понимания и осознания воспринимаемого материала. В предлагаемом курсе математики выделяются несколько разделов.
АЛГЕБРА
Линейное уравнение с одной переменной (15ч)
Введение в алгебру. Линейное уравнение с одной переменной. Решение задач с помощью уравнений. Повторение и систематизация учебного материала.
Цель: ознакомить обучающихся со способом решения линейных уравнений с одной переменной, выработать умение решать уравнения и применять их при решении текстовых задач.
Целые выражения (52 ч)
Тождественно равные выражения. Тождества. Степень с натуральным показателем. Свойства степени с натуральным показателем. Одночлены. Многочлены. Сложение и вычитание многочленов. Умножение одночлена на многочлен. Умножение многочлена на многочлен. Разложение многочленов на множители. Вынесение общего множителя за скобки. Разложение многочленов на множители. Метод группировки. Произведение разности и суммы двух выражений. Разность квадратов двух выражений. Квадрат суммы и квадрат разности двух выражений. Преобразование многочлена в квадрат суммы или разности двух выражений. Сумма и разность кубов двух выражений. Применение различных способов разложения многочлена на множители. Повторение и систематизация учебного материала.
Цель: выработать умение выполнять действия над степенями с натуральными показателями; выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители; применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.
Функции (12 ч)
Связь между величинами. Функция. Способы задания функции. График функции. Линейная функция, её график и свойства. Повторение и систематизация учебного материала.
Цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками функций.
Системы линейных уравнений (19ч)
Уравнения с двумя переменными. Линейное уравнение с двумя переменными и его график. Системы уравнений с двумя переменными. Графический метод решения системы двух линейных уравнений с двумя переменными. Решение систем линейных уравнений методом подстановки. Решение систем линейных уравнений методом сложения. Решение задач с помощью систем линейных уравнений. Повторение и систематизация учебного материала.
Цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
Повторение (4 ч.)
Календарно-тематическое планирование
по курсу _алгебры_
____7___ класс
№ параграфа | Содержание учебного материала | Кол-во часов | Дата проведения |
План | Факт |
| 1. Линейное уравнение с одной переменной | 15 | | |
1 | Введение в алгебру | 3 | | |
2 | Линейное уравнение с одной переменной | 5 | | |
3 | Решение текстовых задач | 5 | | |
| Повторение и систематизация учебного материала | 1 | | |
| Контрольная работа № 1. | 1 | | |
| 2. Целые выражения | 52 | | |
4 | Тождественно равные выражения. Тождества. | 2 | | |
5 | Степень с натуральным показателем | 3 | | |
6 | Свойства степени с натуральным показателем | 3 | | |
7 | Одночлены | 2 | | |
8 | Многочлены | 1 | | |
9 | Сложение и вычитание многочленов | 3 | |
| Контрольная работа № 2 | 1 | | |
10 | Умножение одночлена на многочлен | 4 | | |
11 | Умножение многочлена на многочлен | 4 | | |
12 | Разложение многочленов на множители. Вынесение общего множителя за скобки. | 3 | | |
13 | Разложение многочлена на множители. Метод группировки. | 3 | | |
| Контрольная работа № 3 | 1 | | |
14 | Произведение разности и суммы выражений | 3 | | |
15 | Разность квадратов двух выражений | 2 | | |
16 | Квадрат суммы и квадрат разности двух выражений | 3 | | |
17 | Преобразование многочлена в квадрат суммы или разности двух выражений | 3 | | |
| Контрольная работа № 4 | 1 | | |
18 | Сумма и разность кубов двух выражений | 3 | | |
19 | Применение различных способов разложения многочлена на множители | 4 | | |
| Повторение и систематизация учебного материала | 2 | | |
| Контрольная работа № 5 | 1 | | |
| 3.Функции | 12 | | |
20 | Связи между величинами. Функция. | 2 | | |
21 | Способы задания функции | 2 | | |
22 | График функции | 2 | | |
| Повторение и систематизация учебного материала | 1 | | |
23 | Линейная функция, её график и свойства | 4! | | |
| Контрольная работа № 6 | 1 | | |
| 4.Системы линейных уравнений с двумя переменными | 19 | | |
24 | Уравнения с двумя переменными | 2 | | |
25 | Линейное уравнение с двумя переменными и его график | 3 | | |
26 | Системы линейных уравнений с двумя переменными. Графический метод решения двух линейных уравнений с двумя переменными | 3 | | |
27 | Решение систем линейных уравнений методом подстановки | 2 | | |
28 | Решение систем линейных уравнений методом сложения | 3 | | |
29 | Решение задач с помощью систем линейных уравнений | 4 | | |
| Повторение и систематизация учебного материала | 1 | | |
| Контрольная работа № 7 | 1 | | |
| 5. Повторение и систематизация учебного материала | 4 | | |
| Повторение и систематизация учебного материала за курс алгебры 7 класса | 3 | | |
| Итоговая контрольная работа № 8 | 1 | | |
| Итого | 102 | | |
Система оценки планируемых результатов
Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.
Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.
Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.
Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.
Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.
Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.
Особенности оценки предметных результатов
Оценка предметных результатов представляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.
Формирование этих результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.
Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.
Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.
Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.
Практика показывает, что для описания достижений, обучающихся целесообразно установить следующие пять уровней.
Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).
Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:
• повышенный уровень достижения планируемых результатов, оценка «хорошо» (отметка «4»);
• высокий уровень достижения планируемых результатов, оценка «отлично» (отметка «5»).
Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.
Индивидуальные траектории обучения обучающихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.
Для описания подготовки учащихся, уровень достижений которых ниже базового, целесообразно выделить также два уровня:
• пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);
• низкий уровень достижений, оценка «плохо» (отметка «1»).
Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.
Как правило, пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что обучающимся не освоено даже и половины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.
Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.
Материально-техническое обеспечение образовательного процесса
Литература:
1. Учебники:
Алгебра : 7 класс : учебник для учащихся общеобразовательных организаций / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. Вентана-Граф, 2020год. – 272 с. : ил.
2. Методическая литература:
Алгебра : 7 класс : методическое пособие / Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М. : Вентана-Граф, 2020. – 184 с. : ил.