Муниципальное бюджетное общеобразовательное учреждение
«Кардымовская средняя школа имени Героя Советского Союза С.Н.Решетова»
Кардымовского района Смоленской области
«Рассмотрена» | «Принята» | «Утверждена» |
протокол № 1 | педагогическим советом | приказом от «31» августа 2020 г. |
от « 17» августа 2020г. | | № 42 |
Руководитель ШМО | Протокол № 1 | Директор |
_____________ /И.А. Сауткина/ | от «31» августа 2020г. | ___________/Н.В .Силина / |
| | |
РАБОЧАЯ ПРОГРАММА
основного общего образования
по геометрии
для 8 класса А
Составитель:
Агеева Л.В.
учитель математики
первой квалификационной категории
«Согласована»
Заместитель директора
___________ / Н.В. Морковкина/
«31» августа 2020г
Пояснительная записка
Рабочая программа учебного предмета «геометрия», 8 класс, составлена для учащихся 8 «А» класса на 2020-2021 учебный год на основании
Федерального закона Российской Федерации от 29 декабря 2012 года № 273 – ФЗ «Об образовании в Российской Федерации»
Федерального государственного образовательного стандарта ООО (2010г.)
Основной образовательной программы основного общего образования МБОУ «Кардымовская СШ»
Учебного плана МБОУ «Кардымовская СШ» на 2020-2021 учебный год.
Для реализации рабочей программы используется учебник :Геометрия. 7-9 классы: учебник для общеобразовательных организаций с приложением на электронном носителе/Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. -4 издание.-М.:Просвещение, 2015.
На изучение данного предмета отводится 70часов.
Форма стартовой диагностики – проверочная работа.
Форма промежуточной аттестации –контрольная работа.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА
В процессе изучения предмета геометрия учащиеся получат возможность изучать основные понятия и определения геометрических фигур по программе;
формулировки основных теорем и их следствий;
уметь:
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры, выполнять чертежи по условию задач, осуществлять преобразования фигур;
решать задачи на вычисление геометрических величин, применяя изученные свойства фигур и формулы;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними и применяя дополнительные построения, алгебраический аппарат и соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы и обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
владеть алгоритмами решения основных задач на построение;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
решение практических задач, связанных с нахождением геометрических величин;
построение геометрическими инструментами.
Личностные результаты
У выпускника будут сформированы:
формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
умение контролировать процесс и результат учебной математической деятельности;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
У выпускника могут быть сформированы: основные понятия и определения геометрических фигур по программе;
формулировки основных теорем и их следствий;
уметь:
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры, выполнять чертежи по условию задач, осуществлять преобразования фигур;
решать задачи на вычисление геометрических величин, применяя изученные свойства фигур и формулы;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними и применяя дополнительные построения, алгебраический аппарат и соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы и обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
владеть алгоритмами решения основных задач на построение;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
решение практических задач, связанных с нахождением геометрических величин;
построение геометрическими инструментами.
Метапредметные результаты
1. Регулятивные универсальные учебные действия
Выпускник научится: умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
Выпускник получит возможность научиться: умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
2. Познавательные универсальные учебные действия
Выпускник научится: осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ - компетентности);
формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
Выпускник получит возможность научиться:
умению находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
3. Коммуникативные универсальные учебные действия
Выпускник научится:
умению организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
слушать партнера;
формулировать, аргументировать и отстаивать свое мнение;
Выпускник получит возможность научиться: умению организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
Предметные результаты
Выпускник научится: овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
овладение навыками устных письменных, инструментальных вычислений;
овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;
умение измерять длины отрезков, величины углов;
Выпускник получит возможность научиться: умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства.
Основное содержание тем.
Вводное повторение (3 часа)
Повторение материала курса 7 класса.
Четырехугольники (13 часов)
Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.
Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.
Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.
Площадь (14 часов)
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.
Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.
Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.
Подобные треугольники (19 часов)
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.
В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.
Окружность (17 часов)
Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.
В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.
Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.
Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.
Решение задач. (3 ч)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.
Тематическое планирование
№ | Тема | Количество часов | Контрольная работа |
1 | Вводное повторение | 3 | |
2 | Глава 5. Четырехугольники | 13 | 1 |
3 | Глава 6. Площадь | 14 | 1 |
4 | Глава 7. Подобные треугольники | 19 | 2 |
5 | Глава 8. Окружность | 17 | 1 |
6 | Промежуточная аттестация | 1 | 1 |
7 | Повторение | 3 | |
| Итого | 70 | 6 |
Календарно-тематический план
№ урока | Название раздела и тема урока | Дата проведения урока планируемая | Дата проведения урока фактическая |
1 | Повторение. Начальные геометрические сведения. Признаки равенства треугольников. | 01.09 | |
2 | Повторение. Признаки параллельности прямых. | 04.09 | |
3. | Повторение. Соотношения между сторонами и углами треугольника. | 08.09 | |
§1. МНОГОУГОЛЬНИКИ. |
4 | Стартовая диагностика. Многоугольник. Выпуклый многоугольник. | 11.09 | |
§2. ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ. |
5 | Параллелограмм. | 15.09 | |
6 | Признаки параллелограмма. | 18.09 | |
7 | Решение задач по теме: «Параллелограмм». | 22.09 | |
8 | Трапеция. | 25.09 | |
9 | Теорема Фалеса. | 29.09 | |
10 | Задачи на построение. | 02.10 | |
§3. ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ. |
11 | Прямоугольник. | 06.10 | |
12 | Ромб. Квадрат. | 09.10 | |
13 | Решение задач по теме: «Прямоугольник, ромб, квадрат» | 13.10 | |
14 | Осевая и центральная симметрии. | 16.10 | |
15 | Решение задач. | 20.10 | |
16 | КОНТРОЛЬНАЯ РАБОТА№1 по теме «Четырёхугольники». | 23.10 16 ур. | |
§1. ПЛОЩАДЬ МНОГОУГОЛЬНИКА. |
17 | Площадь многоугольника. | 03.11 | |
18 | Площадь прямоугольника. | 06.11 | |
§2. ПЛОЩАДИ ПАРАЛЛЕЛОГРАММА, ТРЕУГОЛЬНИКА И ТРАПЕЦИИ. |
19 | Площадь параллелограмма. | 10.11 | |
20 | Площадь треугольника. | 13.11 | |
21 | Площадь треугольника. | 17.11 | |
22 | Площадь трапеции. | 20.11 | |
23 | Решение задач на вычисление площадей фигур. | 24.11 | |
24 | Решение задач на вычисление площадей фигур. | 27.11 | |
§3. ТЕОРЕМА ПИФАГОРА. |
25 | Теорема Пифагора. | 01.12 | |
26 | Теорема, обратная теореме Пифагора. | 04.12 | |
27 | Решение задач по теме: «Теорема Пифагора». | 08.12 | |
28 | Решение задач. | 11.12 | |
29 | Решение задач. | 15.12 | |
30 | КОНТРОЛЬНАЯ РАБОТА №2 по теме: «Площадь». | 18.12 | |
31 | Анализ контрольной работы. | 22.12 | |
§1. ОПРЕДЕЛЕНИЕ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ. |
32 | Определение подобных треугольников. | 25.12 16 ур | |
33 | Отношение площадей подобных треугольников. | 12.01 | |
§2. ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ. |
34 | Первый признак подобия треугольников. | 15.01 | |
35 | Решение задач на применение первого признак подобия треугольников | 19.01 | |
36 | Второй и третий признаки подобия треугольников. | 22.01 | |
37 | Решение задач. | 26.01 | |
38 | КОНТРОЛЬНАЯ РАБОТА №3 «Признаки подобия треугольников». | 29.01 | |
§3. ПРИМЕНЕНИЕ ПОДОБИЯ К ДОКАЗАТЕЛЬСТВУ ТЕОРЕМ И РЕШЕНИЮ ЗАДАЧ. |
39 | Анализ контрольной работы. Средняя линия треугольника. | 02.02 | |
40 | Свойство медианы треугольника. | 05.02 | |
41 | Пропорциональные отрезки в прямоугольном треугольнике. | 09.02 | |
42 | Решение задач по теме «Пропорциональные отрезки в прямоугольном треугольнике». | 12.02 | |
43 | Решение задач по теме «Пропорциональные отрезки в прямоугольном треугольнике». | 16.02 | |
44 | Задачи на построение. | 19.02 | |
45 | Задачи на построение методом подобных треугольников. | 26.02 | |
§4. СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА. |
46 | Синус, косинус и тангенс острого угла прямоугольного треугольника. | 02.03 | |
47 | Значения синуса, косинуса и тангенса для углов 30, 45 и 60. | 05.03 | |
48 | Соотношение между сторонами и углами прямоугольного треугольника. Решение задач. | 09.03 | |
49 | КОНТРОЛЬНАЯ РАБОТА №4 «Применение подобия к решению задач». | 12.03 | |
50 | Решение задач | 16.03 | |
§1. КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ. |
51 | Взаимное расположение прямой и окружности. | 19.03 19 ур | |
52 | Касательная к окружности. | 30.03 | |
53 | Касательная к окружности. Решение задач. | 02.04 | |
§2. ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ. |
54 | Теорема о вписанном угле. | 06.04 | |
55 | Теорема о вписанном угле. | 09.04 | |
56 | Теорема об отрезках пересекающихся хорд | 13.04 | |
57 | Решение задач по теме «Центральные и вписанные углы». | 16.04 | |
§3. ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА. |
58 | Свойства биссектрисы угла. | 20.04 | |
59 | Серединный перпендикуляр. | 23.04 | |
60 | Теорема о точке пересечения высот треугольника. | 27..04 | |
61 | Промежуточная аттестация. | 30.04 | |
§4. ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТИ. |
|
62 | Вписанная окружность. | 04.05 | |
63 | Вписанная окружность. Свойство описанного четырёхугольника. | 07.05 | |
64 | Описанная окружность. Свойство вписанного четырёхугольника. | 11.05 | |
65 | Описанная окружность. Свойство вписанного четырёхугольника. | 14.05 | |
66 | Описанная окружность. Свойство вписанного четырёхугольника. | 18.05 | |
67 | Контрольная работа №5 по теме «Окружность» | 21.05 | |
68 | Повторение. Решение задач. | 25.05 | |
69 | Решение задач | 28.05 | |
70 | Итоговый урок |
Согласно годовому календарному учебному графику МБОУ «Кардымовская СШ» количество запланированных уроков составляет – 69 , объединены уроки №69 и 70, так как 1 урок выпадает на праздничный день –23.02).