СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по физике 7-9 классы

Категория: Физика

Нажмите, чтобы узнать подробности

Рабочая программа состоит из:

1. Пояснительная записка

2. Планируемые результаты изучения учебного предмета

3. Содержание учебного материала

4. Тематическое планирование.

Просмотр содержимого документа
«Рабочая программа по физике 7-9 классы»

Пояснительная записка

Нормативные правовые документы

Рабочая программа по учебному предмету «Физика» составлена на основании:

- Федерального закона «Об образовании в Российской Федерации»;

-Закона Республики Башкортостан « Об образовании в Республике Башкортостан»;

-Федерального государственного образовательного стандарта основного общего образования (утверждён Приказом Минобрнауки Российской Федерации от 17.12.2010 №1897);

-Устава муниципального бюджетного общеобразовательного учреждения средняя общеобразовательная школа села Маядык муниципального района Дюртюлинский район Республики Башкортостан;

- основной образовательной программы основного общего образования МБОУ СОШ с. Маядык, приказ № 91 от 28.08.2015 г.;

- Федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования (утверждён Приказом Минобрнауки РФ от 31 марта 2014 г.№253); с внесенными изменениями (приказ Минобрнауки от 5. 07.2017 г. № 679);

-положения о рабочей программе;

- учебного плана МБОУ СОШ с. Маядык на 2017- 2018 учебный год;

- Н. В. Филонович, Е. М. Гутник. Рабочая программа Физика 7 – 9 классы. – М. : Дрофа, 2017.

Настоящая рабочая программа обеспечена учебниками:

- Перышкин А.В. Физика 7 класс – М.: Дрофа, 2017

- Перышкин А.В. Физика 8 класс – М.: Дрофа

- Перышкин А.В., Гутник Е. М. Физика 9 класс – М.: Дрофа


Планируемые результаты изучения учебного предмета

Механические явления

Выпускник научится:

• распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;

• описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

• различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;

• решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);

• приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

Выпускник научится:

• распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;

• описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;

• различать основные признаки моделей строения газов, жидкостей и твёрдых тел;

• решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;

• приводить примеры практического использования физических знаний о тепловых явлениях;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;

• приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

• распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;

• описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;

• решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• приводить примеры практического использования физических знаний о электромагнитных явлениях;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);

• приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

• распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;

• описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

• анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;

• различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;

• приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

• использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• соотносить энергию связи атомных ядер с дефектом массы;

• приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;

• понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

• различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;

• понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

• указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;

• различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;

• различать гипотезы о происхождении Солнечной системы


Содержание учебного материала

Физика и ее роль в познании окружающего мира

Физика — наука о природе. Физические тела и явления. Физические свойства тел. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы. Физические величины. Измерения физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики в формировании естественно-научной грамотности.

Механические явления

Механическое движение. Материальная точка как модель физического тела. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Система отсчета. Физические величины, необходимые для описания движения, и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Равномерное и равноускоренное прямолинейное движение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Равномерное движение по окружности. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Единицы силы. Инерциальная система отсчета. Законы Ньютона. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Искусственные спутники Земли. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая сил. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике. Искусственные спутники Земли. Первая космическая скорость.

Импульс. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии.

Простые механизмы. Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы. Центр тяжести тела. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («золотое правило» механики). Виды равновесия. Коэффициент полезного действия механизма.

Давление. Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Опыт Торричелли. Барометр-анероид, манометр. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос). Поршневой жидкостный насос. Давление жидкости и газа на погруженное в них тело. Закон Архимеда. Условия плавания тел. Плавание тел и судов. Воздухоплавание.

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. Гармонические колебания. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой

резонанс.

Тепловые явления

Строение вещества. Атомы и молекулы. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представлений.

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Влажность воздуха. Объяснение изменения агрегатного состояния

вещества на основе молекулярно-кинетических представлений. Работа газа при расширении. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Электромагнитные явления

Электризация физических тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Делимость электрического заряда. Электрон. Закон сохранения электрического заряда. Проводники, диэлектрики и полупроводники. Электроскоп. Электрическое поле как особый вид материи. Строение атома. Напряженность электрического поля. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора.

Электрический ток. Источники тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления. Зависимость силы тока от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное и параллельное соединение проводников. Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока. Нагревание проводников электрическим током. Закон Джоуля—Ленца. Электрические нагревательные и осветительные

приборы. Короткое замыкание. Правила безопасности при работе с электроприборами.

Опыт Эрстеда. Магнитное поле. Индукция магнитного поля. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель. Однородное и неоднородное магнитное поле. Правило буравчика. Обнаружение магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Правило левой

руки. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции.

Электромагнитные колебания. Колебательный контур. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.

Электромагнитная природа света. Скорость света. Источники света. Прямолинейное распространение света. Отражение света. Закон отражения света. Плоское зеркало. Изображение предмета в зеркале. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. Спектрограф и спектроскоп. Типы оптических спектров. Спектральный анализ.

Квантовые явления

Строение атомов. Планетарная модель атома. Поглощение и испускание света атомами. Происхождение линейчатых спектров. Опыты Резерфорда.

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Период полураспада. Закон радиоактивного распада. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Состав, строение и происхождение Солнечной системы. Физическая природа небесных тел Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной. Гипотеза Большого взрыва.

Лабораторные работы

1. Определение цены деления измерительного прибора.

2. Измерение размеров малых тел.

3. Измерение массы тела на рычажных весах.

4. Измерение объема тела.

5. Определение плотности твердого тела.

6. Градуирование пружины и измерение сил динамометром.

7. Выяснение зависимости силы трения скольжения от площади соприкасающихся тел и прижимающей силы.

8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.

9. Выяснение условий плавания тела в жидкости.

10. Выяснение условия равновесия рычага.

11. Определение КПД при подъеме тела по наклонной плоскости.

12. Определение количества теплоты при смешивании воды разной температуры.

13. Определение удельной теплоемкости твердого тела.

14. Определение относительной влажности воздуха.

15. Сборка электрической цепи и измерение силы тока в ее различных участках.

16. Измерение напряжения на различных участках электрической цепи.

17. Измерение силы тока и его регулирование реостатом.

18. Измерение сопротивления проводника при помощи амперметра и вольтметра.

19. Измерение мощности и работы тока в электрической лампе.

20. Сборка электромагнита и испытание его действия.

21. Изучение электрического двигателя постоянного тока (на модели).

22. Изучение свойств изображения в линзах.

23. Исследование равноускоренного движения без начальной скорости.

24. Измерение ускорения свободного падения.

25. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

26. Изучение явления электромагнитной индукции.

27. Наблюдение сплошного и линейчатых спектров испускания.

28. Измерение естественного радиационного фона дозиметром.

29. Изучение деления ядра атома урана по фотографии треков.

30. Изучение треков заряженных частиц по готовым фотографиям.



Тематическое планирование

7 класс

Раздел, тема

Характеристика основных видов деятельности обучающихся

Физика и ее роль в познании окружающего мира (4 ч)

Физика — наука о природе. Физические явления, вещество, тело, материя. Физические свойства тел. Основные методы изучения, их различие. Понятие о физической величине. Международная система единиц. Простейшие измерительные приборы. Цена деления шкалы прибора. Нахождение погрешности измерения. Современные достижения науки. Роль физики и ученых нашей страны в развитии технического прогресса. Влияние технологических процессов на окружающую среду.

Лабораторная работа

1.Определение цены деления измерительного прибора

Темы проектов

«Физические приборы вокруг нас», «Физические явления в художественных произведениях (А. С. Пушкина, М. Ю. Лермонтова, Е. Н. Носова, Н. А. Некрасова)», «Нобелевские лауреаты в области физики»

Объяснять, описывать физические явления, отличать физические явления от химических; проводить наблюдения физических явлений, анализировать и классифицировать их; различать методы изучения физики; измерять расстояния, промежутки времени, температуру; обрабатывать результаты измерений; переводить значения физических величин в СИ; выделять основные этапы развития физической науки и называть имена выдающихся ученых; определять цену деления шкалы измерительного прибора; представлять результаты измерений в виде таблиц; записывать результат измерения с учетом погрешности; работать в группе; составлять план презентации

Первоначальные сведения о строении вещества (6 ч)

Представления о строении вещества. Опыты, подтверждающие, что все вещества состоят из отдельных частиц. Молекула — мельчайшая частица вещества. Размеры молекул. Диффузия в жидкостях, газах и твердых телах. Связь скорости диффузии и температуры тела. Физический смысл взаимодействия молекул. Существование сил взаимного притяжения и отталкивания молекул. Явление смачивания и несмачивания тел. Агрегатные состояния вещества. Особенности трех агрегатных состояний вещества. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярного строения.

Зачет по теме «Первоначальные сведения о строении вещества».

Лабораторная работа

2. Измерение размеров малых тел.

Темы проектов

«Зарождение и развитие научных взглядов о строении вещества», «Диффузия вокруг нас», «Удивительные свойства воды»

Объяснять опыты, подтверждающие молекулярное строение вещества, опыты по обнаружению сил взаимного притяжения и отталкивания молекул; объяснять: физические явления на основе знаний о строении вещества, броуновское движение, основные свойства молекул, явление диффузии, зависимость скорости протекания диффузии от температуры тела; схематически изображать молекулы воды и кислорода; сравнивать размеры молекул разных веществ: воды, воздуха; анализировать результаты опытов по движению молекул и диффузии; приводить примеры диффузии в окружающем мире, практического использования свойств веществ в различных агрегатных состояниях; наблюдать и исследовать явление смачивания и несмачивания тел, объяснять данные явления на основе знаний о взаимодействии молекул; доказывать наличие различия в молекулярном строении твердых тел, жидкостей и газов; применять полученные знания при решении задач; измерять размеры малых тел методом рядов, различать способы измерения размеров малых тел; представлять результаты измерений в виде таблиц; работать в группе

Взаимодействие тел (23 ч)

Механическое движение. Траектория движения тела, путь. Основные единицы пути в СИ. Равномерное и неравномерное движение. Относительность движения. Скорость равномерного и неравномерного движения. Векторные и скалярные физические величины. Определение скорости. Определение пути, пройденного телом при равномерном движении, по формуле и с помощью графиков. Нахождение времени движения тел. Явление инерции. Проявление явления инерции в быту и технике. Изменение скорости тел при взаимодействии. Масса. Масса — мера инертности тела. Инертность — свойство тела. Определение массы тела в результате его взаимодействия с другими телами. Выяснение условий равновесия учебных весов. Плотность вещества. Изменение плотности одного и того же вещества в зависимости от его агрегатного состояния. Определение массы тела по его объему и плотности, объема тела по его массе и плотности. Изменение скорости тела при действии на него других тел. Сила — причина изменения скорости движения, векторная физическая величина. Графическое изображение силы. Сила — мера взаимодействия тел. Сила тяжести. Наличие тяготения между всеми телами. Зависимость силы тяжести от массы тела. Свободное падение тел. Возникновение силы упругости. Природа силы упругости. Опытные подтверждения существования силы упругости. Закон Гука. Вес тела. Вес тела — векторная физическая величина. Отличие веса тела от силы тяжести. Сила тяжести на других планетах. Изучение устройства динамометра. Измерения

сил с помощью динамометра. Равнодействующая сил. Сложение двух сил, направленных по одной прямой в одном направлении и в противоположных. Графическое изображение равнодействующей двух сил. Сила трения. Измерение силы трения скольжения. Сравнение силы трения скольжения с силой трения качения. Сравнение силы трения с весом тела. Трение покоя. Роль трения в технике. Способы увеличения и уменьшения трения.

Контрольные работы

по темам «Механическое движение», «Масса», «Плотность вещества»;

по темам «Вес тела», «Графическое изображение сил», «Силы», «Равнодействующая сил».

Лабораторные работы

3. Измерение массы тела на рычажных весах.

4. Измерение объема тела.

5. Определение плотности твердого тела.

6. Градуирование пружины и измерение сил динамометром.

7. Выяснение зависимости силы трения скольжения от площади соприкасающихся тел и прижимающей силы.

Темы проектов

«Инерция в жизни человека», «Плотность веществ на Земле и планетах Солнечной системы», «Сила в наших руках», «Вездесущее трение»

Определять: траекторию движения тела; тело, относительно которого происходит движение; среднюю скорость движения заводного автомобиля; путь, пройденный за данный промежуток времени; скорость тела по графику зависимости пути равномерного движения от времени; плотность вещества; массу тела по его объему и плотности; силу тяжести по известной массе тела; массу тела по заданной силе тяжести; зависимость изменения скорости тела от приложенной силы; доказывать относительность движения тела; рассчитывать скорость тела при равномерном и среднюю скорость при неравномерном движении, силу тяжести и вес тела, равнодействующую двух сил; различать равномерное и неравномерное движение; графически изображать скорость, силу и точку ее приложения; находить связь между взаимодействием тел и скоростью их движения; устанавливать зависимость изменения скорости движения тела от его массы; различать инерцию и инертность тела; определять плотность вещества; рассчитывать силу тяжести и вес тела; выделять особенности планет земной группы и планет-гигантов (различие и общие свойства); приводить примеры взаимодействия тел, приводящего к изменению их скорости; проявления явления инерции в быту; проявления тяготения в окружающем мире; видов деформации, встречающихся в быту; различных видов трения; называть способы увеличения и уменьшения силы трения; рассчитывать равнодействующую двух сил; переводить основную единицу пути в км, мм, см, дм; основную единицу массы в т, г, мг; значение плотности из кг/м3 в г/см3; выражать скорость в км/ч, м/с; анализировать табличные данные; работать с текстом учебника, выделять главное, систематизировать и обобщать полученные сведения о массе тела; проводить эксперимент по изучению механического движения, сравнивать опытные данные; экспериментально находить равнодействующую двух сил; применять знания к решению задач; измерять объем тела с помощью измерительного цилиндра; плотность твердого тела с помощью весов и измерительного цилиндра; силу

трения с помощью динамометра; взвешивать тело на учебных весах и с их

помощью определять массу тела; пользоваться разновесами; градуировать пружину; получать шкалу с заданной ценой деления; анализировать результаты измерений и вычислений, делать выводы; представлять результаты измерений и вычислений в виде таблиц; работать в группе

Давление твердых тел, жидкостей и газов (21 ч)

Давление. Формула для нахождения давления. Единицы давления. Выяснение способов изменения давления в быту и технике. Причины возникновения давления газа. Зависимость давления газа данной массы от объема и температуры. Различия между твердыми телами, жидкостями и газами. Передача давления жидкостью и газом. Закон Паскаля. Наличие давления внутри жидкости. Увеличение давления с глубиной погружения. Обоснование расположения поверхности однородной жидкости в сообщающихся сосудах на одном уровне, а жидкостей с разной плотностью — на разных уровнях. Устройство и действие шлюза. Атмосферное давление. Влияние атмосферного давления на живые организмы. Явления, подтверждающие существование атмосферного давления. Определение атмосферного давления. Опыт Торричелли. Расчет силы, с которой атмосфера давит на окружающие предметы. Знакомство с работой и устройством барометра-анероида. Использование его при метеорологических наблюдениях. Атмосферное давление на различных высотах. Устройство и принцип действия открытого жидкостного и металлического манометров. Принцип действия поршневого жидкостного насоса и гидравлического пресса. Физические основы работы гидравлического пресса. Причины возникновения выталкивающей силы. Природа выталкивающей силы. Закон Архимеда. Плавание тел. Условия плавания тел. Зависимость глубины погружения тела в жидкость от его плотности. Физические основы плавания судов и воздухоплавания. Водный и воздушный транспорт.

Кратковременные контрольные работы

по теме «Давление твердого тела»;

по теме «Давление в жидкости и газе. Закон Паскаля».

Зачет по теме «Давление твердых тел, жидкостей и газов»

Лабораторные работы

8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.

9. Выяснение условий плавания тела в жидкости.

Темы проектов

«Тайны давления», «Нужна ли Земле атмосфера», «Зачем нужно измерять давление», «Выталкивающая сила»

Приводить примеры, показывающие зависимость действующей силы от площади опоры; подтверждающие существование выталкивающей силы; увеличения площади опоры для уменьшения давления; сообщающихся сосудов в быту, применения поршневого жидкостного насоса и гидравлического пресса, плавания различных тел и живых организмов, плавания и воздухоплавания; вычислять давление по известным массе и объему, массу воздуха, атмосферное давление, силу Архимеда, выталкивающую силу по данным эксперимента; выражать основные единицы давления в кПа, гПа; отличать газы по их свойствам от твердых тел и жидкостей; объяснять: давление газа на стенки сосуда на основе теории строения вещества, причину

передачи давления жидкостью или газом во все стороны одинаково, влияние атмосферного давления на живые организмы, измерение атмосферного давления с помощью трубки Торричелли, изменение атмосферного давления по мере увеличения высоты над уровнем моря, причины плавания тел, условия плавания судов, изменение осадки судна; анализировать результаты эксперимента по изучению давления газа, опыт по передаче давления жидкостью, опыты с ведерком Архимеда; выводить формулу для расчета давления жидкости на дно и стенки сосуда, для определения выталкивающей силы; устанавливать зависимость изменения давления в жидкости и газе с изменением глубины; сравнивать атмосферное давление на различных высотах от поверхности Земли; наблюдать опыты по измерению атмосферного давления и делать выводы; различать манометры по целям использования; устанавливать зависимость между изменением уровня жидкости в коленах манометра и давлением; доказывать, основываясь на законе Паскаля, существование выталкивающей силы, действующей на тело; указывать причины, от которых зависит сила Архимеда; работать с текстом учебника, анализировать формулы, обобщать и делать выводы; составлять план проведения опытов; проводить опыты по обнаружению атмосферного давления, изменению атмосферного давления с высотой, анализировать их результаты и делать выводы; проводить исследовательский эксперимент: по определению зависимости давления от действующей силы, с сообщающимися сосудами, анализировать результаты и делать выводы; конструировать прибор для демонстрации гидростатического давления; измерять атмосферное давление с помощью барометра-анероида, давление с помощью манометра; применять знания к решению задач; опытным путем обнаруживать выталкивающее действие жидкости на погруженное в нее тело; выяснить условия, при которых тело плавает, всплывает, тонет в жидкости; работать в группе

Работа и мощность. Энергия (13 ч)

Механическая работа, ее физический смысл. Мощность — характеристика скорости выполнения работы. Простые механизмы. Рычаг. Условия равновесия рычага. Момент силы — физическая величина, характеризующая действие силы. Правило моментов. Устройство и действие рычажных весов. Подвижный и неподвижный блоки — простые механизмы. Равенство работ при использовании простых механизмов. «Золотое правило» механики. Центр тяжести тела. Центр тяжести различных твердых тел. Статика — раздел механики, изучающий условия равновесия тел. Условия равновесия тел. Понятие о полезной и полной работе. КПД механизма. Наклонная плоскость. Определение КПД наклонной плоскости. Энергия. Потенциальная энергия. Зависимость потенциальной энергии тела, поднятого над землей, от его массы и высоты подъема. Кинетическая энергия. Зависимость кинетической энергии от массы тела и его скорости. Переход одного вида механической энергии в другой. Переход энергии от одного тела к другому.

Зачет по теме «Работа и мощность. Энергия».

Лабораторные работы

10. Выяснение условия равновесия рычага.

11. Определение КПД при подъеме тела по наклонной плоскости.

Темы проектов

«Рычаги в быту и живой природе», «Дайте мне точку опоры, и я подниму Землю»

Вычислять механическую работу, мощность по известной работе, энергию; выражать мощность в различных единицах; определять условия, необходимые для совершения механической работы; плечо силы; центр тяжести плоского тела; анализировать мощности различных приборов; опыты с подвижным и неподвижным блоками; КПД различных механизмов; применять условия равновесия рычага в практических целях: подъем и перемещение груза; сравнивать действие подвижного и неподвижного блоков; устанавливать зависимость между механической работой, силой и пройденным путем; между

работой и энергией; приводить примеры: иллюстрирующие, как момент силы характеризует действие силы, зависящее и от модуля силы, и от ее плеча; применения неподвижного и подвижного блоков на практике; различных видов равновесия, встречающихся в быту; тел, обладающих одновременно и кинетической, и потенциальной энергией; превращения энергии из одного вида в другой; работать с текстом учебника, обобщать и делать выводы; устанавливать опытным путем, что полезная работа, выполненная с помощью простого механизма, меньше полной; вид равновесия по изменению положения центра тяжести тела; проверять опытным путем, при каком соотношении сил и их плеч рычаг находится в равновесии; правило моментов; работать в группе; применять знания к решению задач; демонстрировать презентации; выступать с докладами; участвовать в обсуждении докладов и презентаций

Резервное время (3 ч)



8 класс

Раздел, тема

Характеристика основных видов деятельности обучающихся

Тепловые явления (23 ч)

Тепловое движение. Особенности движения молекул. Связь температуры тела и скорости движения его молекул. Движение молекул в газах, жидкостях и твердых телах. Превращение энергии тела в механических процессах.

Внутренняя энергия тела. Увеличение внутренней энергии тела путем совершения работы над ним или ее уменьшение при совершении работы телом. Изменение внутренней энергии тела путем теплопередачи. Теплопроводность. Различие теплопроводностей различных веществ. Конвекция в жидкостях и газах. Объяснение конвекции. Передача энергии излучением. Особенности видов теплопередачи. Количество теплоты. Единицы количества теплоты. Удельная теплоемкость вещества. Формула для расчета количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении. Устройство и применение калориметра. Топливо как источник энергии. Удельная теплота сгорания топлива. Формула для расчета количества теплоты, выделяемого при сгорании топлива. Закон сохранения механической энергии. Превращение механической энергии во внутреннюю. Превращение внутренней энергии в механическую. Сохранение энергии в тепловых процессах. Закон сохранения и превращения энергии в природе. Агрегатные состояния вещества. Кристаллические тела. Плавление и отвердевание. Температура плавления. График плавления и отвердевания

кристаллических тел. Удельная теплота плавления. Объяснение процессов плавления и отвердевания на основе знаний о молекулярном строении вещества. Формула для расчета количества теплоты, необходимого для плавления тела или выделяющегося при его кристаллизации. Парообразование и испарение. Скорость испарения. Насыщенный и ненасыщенный пар. Конденсация пара. Особенности процессов испарения и конденсации. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Процесс кипения. Постоянство температуры при кипении в открытом сосуде. Физический смысл удельной теплоты парообразования и конденсации. Влажность воздуха. Точка росы. Способы определения влажности воздуха. Гигрометры: конденсационный и волосной. Психрометр. Работа газа и пара при расширении. Тепловые двигатели. Применение закона сохранения и превращения энергии в тепловых двигателях. Устройство и принцип действия двигателя внутреннего сгорания (ДВС). Экологические проблемы при использовании ДВС. Устройство и принцип действия паровой турбины. КПД теплового двигателя.

Контрольные работы

по теме «Тепловые явления»;

по теме «Агрегатные состояния вещества».

Лабораторные работы

1. Определение количества теплоты при смешивании воды разной температуры.

2. Определение удельной теплоемкости твердого тела.

3. Определение относительной влажности воздуха.

Темы проектов

«Теплоемкость веществ, или Как сварить яйцо в бумажной кастрюле», «Несгораемая бумажка, или Нагревание в огне медной проволоки, обмотанной бумажной полоской», «Тепловые двигатели, или Исследование принципа действия тепловой машины на примере опыта с анилином и водой в стакане», «Виды теплопередачи в быту и технике (авиации, космосе, медицине)», «Почему оно все электризуется, или Исследование явлений электризации тел»

Различать тепловые явления, агрегатные состояния вещества; анализировать зависимость температуры тела от скорости движения его молекул, табличные данные, график плавления и отвердевания; наблюдать и исследовать превращение энергии тела в механических процессах; приводить примеры: превращения энергии при подъеме тела и при его падении, механической энергии во внутреннюю; изменения внутренней энергии тела путем совершения работы и теплопередачи; теплопередачи путем теплопроводности, конвекции и излучения; применения на практике знаний о различной теплоемкости веществ; экологически чистого топлива; подтверждающие закон сохранения механической энергии; агрегатных состояний вещества; явлений природы, которые объясняются конденсацией пара; использования энергии, выделяемой при конденсации водяного пара; влияния влажности воздуха в быту и деятельности человека; применения ДВС на практике; применения паровой турбины в технике; процессов плавления и кристаллизации веществ; объяснять: изменение внутренней энергии тела, когда над ним совершают работу или тело совершает работу; тепловые явления на основе молекулярно-кинетической теории; физический смысл: удельной теплоемкости вещества, удельной теплоты сгорания топлива, удельной теплоты парообразования; результаты эксперимента; процессы плавления и отвердевания тела на основе молекулярно-кинетических представлений; особенности молекулярного строения газов, жидкостей и твердых тел; понижение температуры жидкости при испарении; принцип работы и устройство ДВС; экологические проблемы использования ДВС и пути их решения; устройство и принцип работы паровой турбины; классифицировать: виды топлива по количеству теплоты, выделяемой при сгорании; приборы для измерения влажности воздуха; перечислять способы изменения внутренней энергии; проводить опыты по изменению внутренней энергии; проводить исследовательский эксперимент по теплопроводности различных веществ; по изучению плавления, испарения и конденсации, кипения воды; сравнивать виды теплопередачи; КПД различных машин и механизмов; устанавливать зависимость между массой тела и количеством теплоты; зависимость процесса плавления от температуры тела; рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, выделяющееся при кристаллизации, необходимое для превращения в пар жидкости любой массы; применять знания к решению задач; определять и сравнивать количество теплоты, отданное горячей водой и полученное холодной при теплообмене; определять удельную теплоемкость вещества и сравнивать ее с табличным значением; измерять влажность воздуха; представлять результаты опытов в виде таблиц; анализировать причины погрешностей измерений; работать в группе; выступать с докладами, демонстрировать презентации


Электрические явления (29 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие одноименно и разноименно заряженных тел. Устройство электроскопа. Понятия об электрическом поле. Поле как особый вид материи. Делимость электрического заряда. Электрон — частица с наименьшим электрическим зарядом. Единица электрического заряда. Строение атома. Строение ядра атома. Нейтроны. Протоны. Модели атомов водорода, гелия, лития. Ионы. Объяснение на основе знаний о строении атома электризации тел при соприкосновении, передаче части электрического заряда от одного тела к другому. Закон сохранения электрического заряда. Деление веществ по способности проводить электрический ток на проводники, полупроводники и диэлектрики. Характерная особенность полупроводников.

Электрический ток. Условия существования электрического тока. Источники электрического тока. Электрическая цепь и ее составные части. Условные обозначения, применяемые на схемах электрических цепей. Природа электрического тока в металлах. Скорость распространения электрического тока в проводнике. Действия электрического тока. Превращение энергии электрического тока в другие виды энергии. Направление электрического тока. Сила тока. Интенсивность электрического тока. Формула для определения силы тока. Единицы силы тока. Назначение амперметра. Включение амперметра в цепь. Определение цены деления его шкалы. Электрическое напряжение, единица напряжения. Формула для определения напряжения. Измерение напряжения вольтметром. Включение вольтметра в цепь. Определение цены деления его шкалы. Электрическое сопротивление. Зависимость силы тока от напряжения при постоянном сопротивлении. Природа электрического сопротивления. Зависимость силы тока от сопротивления при постоянном напряжении. Закон Ома для участка цепи. Соотношение между сопротивлением проводника, его длиной и площадью поперечного сечения. Удельное сопротивление проводника. Принцип действия и назначение реостата. Подключение реостата в цепь. Последовательное соединение проводников. Сопротивление последовательно соединенных проводников. Сила тока и напряжение в цепи при последовательном соединении. Параллельное соединение проводников. Сопротивление двух параллельно соединенных проводников. Сила тока и напряжение в цепи при параллельном соединении. Работа электрического тока. Формула для расчета работы тока. Единицы работы тока. Мощность электрического тока. Формула для расчета мощности тока. Формула для вычисления работы электрического тока через мощность и время. Единицы работы тока, используемые на практике. Расчет стоимости израсходованной электроэнергии. Формула для расчета количества теплоты, выделяемого проводником при протекании по нему электрического тока. Закон Джоуля—Ленца. Конденсатор. Электроемкость конденсатора. Работа электрического поля конденсатора. Единица электроемкости конденсатора. Различные виды ламп, используемые в освещении. Устройство лампы накаливания. Тепловое действие тока. Электрические нагревательные приборы. Причины перегрузки в цепи и короткого замыкания. Предохранители.

Кратковременная контрольная работа

по теме «Электризация тел. Строение атома».

Контрольные работы

по темам «Электрический ток. Напряжение», «Сопротивление. Соединение проводников»;

по темам «Работа и мощность электрического тока», «Закон Джоуля—Ленца», «Конденсатор».

Лабораторные работы

4. Сборка электрической цепи и измерение силы тока в ее различных участках.

5. Измерение напряжения на различных участках электрической цепи.

6. Измерение силы тока и его регулирование реостатом.

7. Измерение сопротивления проводника при помощи амперметра и вольтметра.

8. Измерение мощности и работы тока в электрической лампе.

Темы проектов

«Почему оно все электризуется, или Исследование явлений электризации тел», «Электрическое поле конденсатора, или Конденсатор и шарик от настольного тенниса в пространстве между пластинами конденсатора», «Изготовление конденсатора», «Электрический ветер», «Светящиеся слова», «Гальванический элемент», «Строение атома, или Опыт Резерфорда»

Объяснять: взаимодействие заряженных тел и существование двух родов электрических зарядов; опыт Иоффе—Милликена; электризацию тел при соприкосновении; образование положительных и отрицательных ионов; устройство сухого гальванического элемента; особенности электрического тока в металлах, назначение источника тока в электрической цепи; тепловое, химическое и магнитное действия тока; существование проводников, полупроводников и диэлектриков на основе знаний строения атома; зависимость интенсивности электрического тока от заряда и времени; причину возникновения сопротивления; нагревание проводников с током с позиции молекулярного строения вещества; способы увеличения и уменьшения емкости конденсатора; назначение источников электрического тока и конденсаторов в технике; анализировать табличные данные и графики; причины короткого замыкания; проводить исследовательский эксперимент по

взаимодействию заряженных тел; обнаруживать наэлектризованные тела, электрическое поле; пользоваться электроскопом, амперметром, вольтметром, реостатом; определять изменение силы, действующей на заряженное тело при удалении и приближении его к заряженному телу; цену деления шкалы амперметра, вольтметра; доказывать существование частиц, имеющих наименьший электрический заряд; устанавливать перераспределение заряда при переходе его с наэлектризованного тела на ненаэлектризованное при соприкосновении; зависимость силы тока от напряжения и сопротивления проводника, работы электрического тока от

напряжения, силы тока и времени, напряжения от работы тока и силы тока; приводить примеры: применения проводников, полупроводников и диэлектриков в технике, практического применения полупроводникового диода; источников электрического тока; химического и теплового действия электрического тока и их использования в технике; применения

последовательного и параллельного соединения проводников; обобщать и делать выводы о способах электризации тел; зависимости силы тока и сопротивления проводников; значении силы тока, напряжения и сопротивления при последовательном и параллельном соединении проводников; о работе и мощности электрической лампочки; рассчитывать: силу тока, напряжение, электрическое сопротивление; силу тока, напряжение и сопротивление при последовательном и параллельном соединении проводников; работу и мощность электрического тока; количество теплоты, выделяемое проводником с током по закону Джоуля—Ленца; электроемкость конденсатора; работу, которую совершает электрическое поле конденсатора, энергию конденсатора; выражать силу тока, напряжение в различных единицах; единицу мощности через единицы напряжения и силы тока; работу тока в Вт · ч; кВт · ч; строить график зависимости силы тока от напряжения; классифицировать источники электрического тока; действия электрического тока; электрические приборы по потребляемой ими мощности; лампочки, применяемые на практике; различать замкнутую и разомкнутую электрические цепи; лампы по принципу действия, используемые для освещения, предохранители в современных приборах; исследовать зависимость сопротивления проводника от его длины, площади поперечного сечения и материала проводника; чертить схемы электрической цепи; собирать электрическую цепь; измерять силу тока на различных участках цепи; анализировать результаты опытов и графики; пользоваться амперметром, вольтметром; реостатом для регулирования силы тока в цепи; измерять сопротивление проводника при помощи амперметра и вольтметра; мощность и работу тока в лампе, используя амперметр, вольтметр, часы; представлять результаты измерений в виде таблиц; обобщать и делать выводы о зависимости силы тока и сопротивления проводников; работать в группе; выступать с докладом или слушать доклады, подготовленные с использованием презентации: «История развития электрического освещения», «Использование теплового действия электрического тока в устройстве теплиц и инкубаторов», «История создания конденсатора», «Применение аккумуляторов»; изготовить лейденскую банку

Электромагнитные явления (5 ч)

Магнитное поле. Установление связи между электрическим током и магнитным полем. Опыт Эрстеда. Магнитное поле прямого тока.

Магнитные линии магнитного поля. Магнитное поле катушки с током. Способы изменения магнитного действия катушки с током. Электромагниты и их применение. Испытание действия

электромагнита. Постоянные магниты. Взаимодействие магнитов. Объяснение причин ориентации железных опилок в магнитном поле.

Магнитное поле Земли. Действие магнитного поля на проводник с током. Устройство и принцип действия электродвигателя постоянного тока.

Контрольная работа по теме «Электромагнитные явления».

Лабораторные работы

9. Сборка электромагнита и испытание его действия.

10. Изучение электрического двигателя постоянного тока (на модели).

Темы проектов

«Постоянные магниты, или Волшебная банка», «Действие магнитного поля Земли на проводник с током (опыт с полосками металлической

фольги)»

Выявлять связь между электрическим током и магнитным полем; объяснять: связь направления магнитных линий магнитного поля тока с направлением тока в проводнике; устройство электромагнита; возникновение магнитных бурь, намагничивание железа; взаимодействие полюсов магнитов;

принцип действия электродвигателя и области его применения;

приводить примеры магнитных явлений, использования электромагнитов в технике и быту; устанавливать связь между существованием электрического тока и магнитным полем, сходство между катушкой с током и магнитной стрелкой; обобщать и делать выводы о расположении магнитных стрелок вокруг проводника с током, о взаимодействии магнитов; называть способы усиления магнитного действия катушки с током; получать картины магнитного поля полосового и дугообразного магнитов; описывать опыты по намагничиванию веществ; перечислять преимущества электродвигателей

по сравнению с тепловыми; применять знания к решению задач; собирать электрический двигатель постоянного тока (на модели); определять основные детали электрического двигателя постоянного тока; работать в группе

Световые явления (10 ч)

Источники света. Естественные и искусственные источники света. Точечный источник света и световой луч. Прямолинейное распространение света. Закон прямолинейного распространения

света. Образование тени и полутени. Солнечное и лунное затмения.

Явления, наблюдаемые при падении луча света на границу раздела двух сред. Отражение света. Закон отражения света. Обратимость световых лучей. Плоское зеркало. Построение изображения

предмета в плоском зеркале. Мнимое изображение. Зеркальное и рассеянное отражение света. Оптическая плотность среды. Явление преломления света. Соотношение между углом падения и углом преломления. Закон преломления света. Показатель преломления

двух сред. Строение глаза. Функции отдельных частей глаза. Формирование изображения на сетчатке глаза.

Кратковременная контрольная работа по теме «Законы отражения и преломления света».

Лабораторная работа

11. Изучение свойств изображения в линзах.

Темы проектов

«Распространение света, или Изготовление камеры-обскуры», «Мнимый рентгеновский снимок, или Цыпленок в яйце»

Наблюдать прямолинейное распространение света, отражение света, преломление света; объяснять образование тени и полутени; восприятие изображения глазом человека; проводить исследовательский эксперимент по получению тени и полутени; по изучению зависимости угла отражения света от угла падения; по преломлению света при переходе луча из воздуха в воду; обобщать и делать выводы о распространении света, отражении и преломлении света, образовании тени и полутени; устанавливать связь между движением Земли, Луны и Солнца и возникновением лунных и солнечных затмений; между движением Земли и ее наклоном со сменой времен года с использованием рисунка учебника; находить Полярную звезду в созвездии Большой Медведицы; определять положение планет, используя подвижную карту звездного неба; какая из двух

линз с разными фокусными расстояниями дает большее увеличение; применять закон отражения света при построении

изображения в плоском зеркале; строить изображение точки в плоском зеркале; изображения, даваемые линзой (рассеивающей,

собирающей) для случаев: F d; 2F d; F d F; изображение в фотоаппарате; работать с текстом учебника; различать линзы по внешнему виду, мнимое и действительное изображения; применять знания к решению задач; измерять фокусное расстояние и оптическую силу линзы; анализировать полученные при помощи линзы изображения, делать выводы, представлять результат в виде таблиц; работать в группе; выступать с докладами или слушать доклады, подготовленные с использованием презентации: «Очки, дальнозоркость и близорукость», «Современные оптические приборы: фотоаппарат, микроскоп, телескоп, применение в технике,

история их развития»

Резервное время (3 ч)



9 класс

Раздел, тема

Характеристика основных видов деятельности обучающихся

Законы взаимодействия и движения (23 ч)

Описание движения. Материальная точка как модель тела. Критерии замены тела материальной точкой. Поступательное движение. Система отсчета. Перемещение. Различие между понятиями «путь» и «перемещение». Нахождение координаты тела по его начальной координате и проекции вектора перемещения. Перемещение при прямолинейном равномерном движении. Прямолинейное равноускоренное движение. Мгновенная скорость. Ускорение. Скорость прямолинейного равноускоренного движения. График скорости. Перемещение при прямолинейном равноускоренном движении. Закономерности, присущие прямолинейному равноускоренному движению без начальной скорости. Относительность траектории, перемещения, пути, скорости. Геоцентрическая и гелиоцентрическая системы мира. Причина смены дня и ночи на Земле (в гелиоцентрической системе). Причины движения с точки зрения Аристотеля и его последователей. Закон инерции. Первый закон Ньютона. Инерциальные системы отсчета.

Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Ускорение свободного падения. Падение тел в воздухе и разреженном пространстве. Уменьшение модуля вектора скорости при противоположном направлении векторов начальной скорости и ускорения свободного падения. Невесомость. Закон всемирного тяготения и условия его применимости. Гравитационная постоянная. Ускорение свободного падения на Земле и других небесных телах. Зависимость ускорения свободного падения от широты места и высоты над Землей. Сила упругости. Закон Гука. Сила трения. Виды

трения: трение покоя, трение скольжения, трение качения. Формула для расчета силы трения скольжения. Примеры полезного проявления трения. Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью. Центростремительное ускорение. Искусственные спутники Земли. Первая космическая скорость. Импульс тела. Замкнутая система тел. Изменение импульсов тел при их взаимодействии. Закон сохранения импульса. Сущность и примеры реактивного движения. Назначение, конструкция и принцип действия ракеты. Многоступенчатые ракеты. Работа силы. Работа силы тяжести и силы упругости. Потенциальная энергия. Кинетическая энергия. Теорема об изменении кинетической энергии. Закон сохранения механической энергии.

Контрольная работа

по теме «Законы взаимодействия и движения тел».

Лабораторные работы

1. Исследование равноускоренного движения без начальной скорости.

2. Измерение ускорения свободного падения.

Темы проектов

«Экспериментальное подтверждение справедливости условия криволинейного движения тел», «История развития искусственных спутников Земли и решаемые с их помощью научно-исследовательские задачи»

Объяснять физический смысл понятий: мгновенная скорость, ускорение; наблюдать и описывать прямолинейное и равномерное движение тележки с капельницей; движение маятника в двух системах отсчета, одна из которых связана с землей, а другая с лентой, движущейся равномерно относительно земли; падение одних и тех же тел в воздухе

и в разреженном пространстве; опыты, свидетельствующие о состоянии невесомости тел; наблюдать и объяснять полет модели ракеты; обосновывать возможность замены тела его

моделью — материальной точкой — для описания движения; приводить примеры, в которых координату движущегося тела в любой момент времени можно определить, зная его начальную координату и совершенное им за данный промежуток времени перемещение, и нельзя определить, если вместо перемещения задан пройденный путь; равноускоренного движения, прямолинейного и криволинейного движения тел, замкнутой системы тел; примеры, поясняющие относительность

движения, проявления инерции; определять модули и проекции векторов на координатную ось; записывать уравнение для определения координаты движущегося тела в векторной и скалярной форме; записывать формулы: для нахождения проекции и модуля вектора перемещения тела; для вычисления координаты движущегося тела в любой заданный момент времени; для определения ускорения в векторном виде и в виде

проекций на выбранную ось; для расчета силы трения скольжения, работы силы, работы сил тяжести и упругости, потенциальной энергии поднятого над землей тела, потенциальной энергии сжатой пружины; записывать в виде формулы: второй и третий законы Ньютона, закон всемирного тяготения, закон Гука, закон сохранения импульса, закон

сохранения механической энергии; доказывать равенство модуля вектора перемещения пройденному пути и площади под графиком скорости; строить графики зависимости vx = vx(t); по графику зависимости vx(t) определять скорость в заданный момент времени; сравнивать траектории, пути, перемещения,

скорости маятника в указанных системах отсчета; делать вывод о движении тел с одинаковым ускорением при действии на них только силы тяжести; определять промежуток времени от начала равноускоренного движения шарика до его остановки, ускорение движения шарика и его мгновенную скорость перед ударом о цилиндр; измерять ускорение свободного падения; представлять результаты измерений и вычислений в виде таблиц и графиков; работать в группе

Механические колебания и волны. Звук (12 ч)

Примеры колебательного движения. Общие черты разнообразных колебаний. Динамика колебаний горизонтального пружинного маятника. Свободные колебания, колебательные системы, маятник. Величины, характеризующие колебательное движение: амплитуда, период, частота, фаза колебаний. Зависимость периода и частоты маятника от длины его нити. Гармонические колебания. Превращение механической энергии колебательной системы во внутреннюю. Затухающие колебания. Вынужденные колебания. Частота установившихся вынужденных колебаний. Условия наступления и физическая сущность явления резонанса. Учет резонанса в практике.

Механизм распространения упругих колебаний. Механические волны. Поперечные и продольные упругие волны в твердых, жидких и газообразных средах. Характеристики волн: скорость, длина волны, частота, период колебаний. Связь между этими величинами. Источники звука —тела, колеблющиеся с частотой 16 Гц — 20 кГц.

Ультразвук и инфразвук. Эхолокация. Зависимость высоты звука от частоты, а громкости звука — от амплитуды колебаний и некоторых

других причин. Тембр звука. Наличие среды —необходимое условие распространения звука. Скорость звука в различных средах. Отражение звука. Эхо. Звуковой резонанс.

Контрольная работа

по теме «Механические колебания и волны. Звук».

Лабораторная работа

3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

Темы проектов

«Определение качественной зависимости периода колебаний пружинного маятника от массы груза и жесткости пружины», «Определение качественной зависимости периода колебаний нитяного (математического) маятника от величины ускорения свободного падения», «Ультразвук и инфразвук в природе, технике и медицине»

Определять колебательное движение по его признакам; приводить примеры колебаний, полезных и вредных проявлений резонанса и пути устранения последних, источников звука; описывать динамику свободных колебаний пружинного и математического маятников, механизм образования волн; записывать формулу взаимосвязи периода и частоты колебаний; взаимосвязи величин, характеризующих упругие волны; объяснять: причину затухания свободных колебаний; в чем заключается явление резонанса; наблюдаемый опыт по возбуждению колебаний одного камертона звуком, испускаемым

другим камертоном такой же частоты; почему в газах скорость звука возрастает с повышением температуры; называть: условие существования незатухающих колебаний; физические величины, характеризующие упругие волны; диапазон частот звуковых волн; различать поперечные и продольные волны; приводить обоснования того, что звук является продольной волной; выдвигать гипотезы: относительно зависимости высоты тона от частоты, а громкости — от амплитуды колебаний источника звука; о зависимости скорости звука от свойств среды и от ее

температуры; применять знания к решению задач; проводить экспериментальное исследование зависимости периода колебаний пружинного маятника от m и k; измерять жесткость пружины; проводить исследования зависимости периода (частоты) колебаний маятника от длины его нити; представлять результаты измерений и вычислений в виде таблиц; работать в группе; слушать отчет о результатах выполнения задания-проекта «Определение качественной зависимости периода колебаний математического маятника от ускорения свободного падения»; слушать доклад «Ультразвук и инфразвук в природе, технике и медицине», задавать вопросы и принимать участие в обсуждении темы

Электромагнитное поле (16 ч)

Источники магнитного поля. Гипотеза Ампера. Графическое изображение магнитного поля. Линии неоднородного и однородного магнитного поля. Связь направления линий магнитного поля тока с направлением тока в проводнике. Правило буравчика. Правило правой руки для соленоида. Действие магнитного поля на проводник с током и на движущуюся заряженную частицу. Правило левой руки. Индукция магнитного поля. Модуль вектора магнитной индукции. Линии магнитной индукции. Зависимость магнитного потока,

пронизывающего площадь контура, от площади контура, ориентации плоскости контура по отношению к линиям магнитной индукции и от модуля вектора магнитной индукции магнитного поля. Опыты Фарадея. Причина возникновения индукционного тока. Определение явления электромагнитной индукции. Техническое применение

явления. Возникновение индукционного тока в алюминиевом кольце при изменении проходящего сквозь кольцо магнитного потока. Определение направления индукционного тока. Правило Ленца. Явления самоиндукции. Индуктивность. Энергия магнитного поля тока. Переменный электрический ток. Электромеханический индукционный генератор (как пример —гидрогенератор). Потери энергии в ЛЭП, способы уменьшения потерь. Назначение, устройство

и принцип действия трансформатора, его применение при передаче электроэнергии. Электромагнитное поле, его источник. Различие

между вихревым электрическим и электростатическим полями. Электромагнитные волны: скорость, поперечность, длина волны, причина возникновения волн. Получение и регистрация электромагнитных волн. Высокочастотные электромагнитные колебания и волны — необходимые средства для осуществления радиосвязи. Колебательный контур, получение электромагнитных колебаний. Формула Томсона. Блок-схема передающего и приемного устройств для осуществления радиосвязи. Амплитудная модуляция и детектирование высокочастотных колебаний. Интерференция и дифракция света. Свет как частный случай электромагнитных волн. Диапазон видимого излучения на шкале электромагнитных волн. Частицы электромагнитного излучения — фотоны (кванты). Явление дисперсии. Разложение белого света в спектр. Получение белого света путем сложения спектральных цветов. Цвета тел. Назначение и устройство спектрографа и спектроскопа. Типы оптических

спектров. Сплошной и линейчатые спектры, условия их получения. Спектры испускания и поглощения. Спектральный анализ. Закон

Кирхгофа. Атомы — источники излучения и поглощения света. Объяснение излучения и поглощения света атомами и происхождения

линейчатых спектров на основе постулатов Бора.

Лабораторные работы

4. Изучение явления электромагнитной индукции.

5. Наблюдение сплошного и линейчатых спектров испускания.

Темы проектов

«Развитие средств и способов передачи информации на далекие расстояния с древних времен и до наших дней», «Метод спектрального анализа и его применение в науке и технике»

Делать выводы о замкнутости магнитных линий и об ослаблении поля с удалением от проводников с током; наблюдать и описывать опыты, подтверждающие появление электрического поля при изменении магнитного поля, и делать выводы; наблюдать: взаимодействие алюминиевых колец с магнитом, явление самоиндукции; опыт по излучению и приему электромагнитных волн; свободные электромагнитные колебания в колебательном контуре; разложение белого света

в спектр при его прохождении сквозь призму и получение белого света путем сложения спектральных цветов с помощью линзы; сплошной и линейчатые спектры испускания; формулировать правило правой руки для соленоида, правило буравчика, правило Ленца; определять направление электрического тока в проводниках и направление линий магнитного поля; направление силы, действующей на электрический заряд, движущийся в магнитном поле, знак заряда и направление движения частицы; записывать формулу взаимосвязи модуля

вектора магнитной индукции магнитного поля с модулем силы F, действующей на проводник длиной l, расположенный перпендикулярно линиям магнитной индукции, и силой тока I

в проводнике; описывать зависимость магнитного потока от

индукции магнитного поля, пронизывающего площадь контура, и от его ориентации по отношению к линиям магнитной индукции; различия между вихревым электрическим и электростатическим полями; применять правило буравчика, правило левой руки; правило Ленца и правило правой руки для

определения направления индукционного тока; рассказывать об устройстве и принципе действия генератора переменного тока; о назначении, устройстве и принципе действия трансформатора и его применении; о принципах радиосвязи и телевидения; называть способы уменьшения потерь электроэнергии при передаче ее на большие расстояния, различные диапазоны электромагнитных волн, условия образования сплошных и линейчатых спектров испускания; объяснять излучение и поглощение света атомами и происхождение линейчатых спектров на основе постулатов Бора; проводить исследовательский эксперимент по изучению явления электромагнитной индукции; анализировать результаты эксперимента и делать выводы; работать в группе; слушать доклады «Развитие средств и способов передачи информации на далекие расстояния с древних времен и до наших дней», «Метод

спектрального анализа и его применение в науке и технике»

Строение атома и атомного ядра (11 ч)

Сложный состав радиоактивного излучения, α-, β- и γ-частицы. Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц. Планетарная модель атома. Превращения ядер при радиоактивном распаде на примере α-распада радия. Обозначение ядер химических элементов. Массовое и зарядовое числа. Закон сохранения массового числа и заряда при радиоактивных превращениях. Назначение, устройство и принцип действия счетчика Гейгера и камеры Вильсона.

Выбивание α-частицами протонов из ядер атома азота. Наблюдение фотографий образовавшихся в камере Вильсона треков частиц, участвовавших в ядерной реакции. Открытие и свойства нейтрона. Протонно-нейтронная модель ядра. Физический смысл массового и зарядового чисел. Особенности ядерных сил. Изотопы. Энергия связи. Внутренняя энергия атомных ядер. Взаимосвязь массы и энергии. Дефект масс. Выделение или поглощение энергии в ядерных реакциях. Модель процесса деления ядра урана. Выделение энергии. Условия протекания управляемой цепной реакции. Критическая масса. Назначение, устройство, принцип действия ядерного реактора на медленных нейтронах. Преобразование энергии ядер в электрическую энергию. Преимущества и недостатки АЭС перед

другими видами электростанций. Биологическое действие радиации. Физические величины: поглощенная доза излучения, коэффициент качества, эквивалентная доза. Влияние радиоактивных излучений на живые организмы. Период полураспада радиоактивных веществ.

Закон радиоактивного распада. Способы защиты от радиации. Условия протекания и примеры термоядерных реакций. Выделение энергии и перспективы ее использования. Источники энергии Солнца и звезд.

Контрольная работа

по теме «Строение атома и атомного ядра. Использование

энергии атомных ядер».

Лабораторные работы

6. Измерение естественного радиационного фона дозиметром.

7. Изучение деления ядра атома урана по фотографии треков.

8. Изучение треков заряженных частиц по готовым фотографиям (выполняется дома).

Тема проекта

«Негативное воздействие радиации (ионизирующих излучений) на живые организмы и способы защиты от нее»

Описывать: опыты Резерфорда по обнаружению сложного состава радиоактивного излучения и по исследованию с помощью рассеяния α-частиц строения атома; процесс деления ядра атома урана; объяснять суть законов сохранения массового числа и заряда при радиоактивных превращениях; объяснять физический смысл понятий: энергия связи, дефект масс, цепная реакция, критическая масса; применять законы сохранения массового числа и заряда при записи уравнений ядерных

реакций; называть условия протекания управляемой цепной реакции, преимущества и недостатки АЭС перед другими видами электростанций, условия протекания термоядерной реакции; называть физические величины: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада; рассказывать о назначении ядерного реактора

на медленных нейтронах, его устройстве и принципе действия; приводить примеры термоядерных реакций; применять знания к решению задач; измерять мощность дозы радиационного фона

дозиметром; сравнивать полученный результат с наибольшим допустимым для человека значением; строить график зависимости мощности дозы излучения продуктов распада радона от времени; оценивать по графику период полураспада

продуктов распада радона; представлять результаты измерений в виде таблиц; работать в группе; слушать доклад «Негативное воздействие радиации на живые организмы и способы защиты от нее»

Строение и эволюция Вселенной (5 ч)

Состав Солнечной системы: Солнце, восемь больших планет (шесть из которых имеют спутники), пять планет-карликов, астероиды, коме-

ты, метеорные тела. Формирование Солнечной системы. Земля и планеты земной группы. Общность характеристик планет земной группы. Планеты-гиганты. Спутники и кольца планет-гигантов.

Малые тела Солнечной системы: астероиды, кометы, метеорные тела. Образование хвостов комет. Радиант. Метеорит. Болид. Солнце и звезды: слоистая (зонная) структура, магнитное поле. Источник энергии Солнца и звезд — тепло, выделяемое при протекании в их недрах термоядерных реакций. Стадии эволюции Солнца. Галактики. Метагалактика. Три возможные модели нестационарной Вселенной, предложенные А. А. Фридманом. Экспериментальное подтверждение Хабблом расширения Вселенной. Закон Хаббла.

Темы проектов

«Естественные спутники планет земной группы», «Естественные спутники планет-гигантов»

Наблюдать слайды или фотографии небесных объектов; называть группы объектов, входящих в Солнечную систему; причины образования пятен на Солнце; приводить примеры изменения вида звездного неба в течение суток; сравнивать планеты земной группы; планеты-гиганты; анализировать фотографии или слайды планет, фотографии солнечной короны и образований в ней; описывать фотографии малых тел Солнечной системы; три модели нестационарной Вселенной,

предложенные Фридманом; объяснять физические процессы, происходящие в недрах Солнца и звезд; в чем проявляется

нестационарность Вселенной; записывать закон Хаббла; демонстрировать презентации, участвовать в обсуждении презентаций

Повторение (3 ч)