СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по физике для 9 класса

Категория: Физика

Нажмите, чтобы узнать подробности

Рабочая программа по физике составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования. Она конкретизирует содержание предметных тем образовательного стандарта, дает примерное распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет минимальный набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.

Просмотр содержимого документа
«Рабочая программа по физике для 9 класса»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа разработана на основе следующих документов:

  • Федеральный закон от 29.12.2012 года № 273-ФЗ «Об образовании в Российской Федерации»;

  • Федеральный государственный образовательный стандарт основного общего образования (в ред. от 31.12.2015)

  • Рабочая программа к линии УМК А.В. Перышкина, Н.В., Е.М. Гутник Физика 7-9 классы. Н.В. Филонович, Е.М. Гутник - М.: Дрофа, 2017)

Программа рассчитана на 70 час/год (2 час/нед.) .

Цели и задачи

Изучение физики в основной школе направлено на достижение следующих целей: развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности; понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними; формирование у учащихся представлений о физической картине мира. Достижение целей рабочей программы по физике обеспечивается решением следующих  задач: обеспечение преемственности начального общего, основного общего, среднего (полного) общего образования; обеспечение доступности получения качественного основного общего образования, достижение планируемых результатов освоения основной образовательной программы основного общего образования всеми обучающимися, в том числе детьми-инвалидами и детьми с ограниченными возможностями здоровья; обеспечение эффективного сочетания урочных и внеурочных форм организации образовательного процесса, взаимодействия всех его участников; организация интеллектуальных и творческих соревнований,   проектной и учебно-исследовательской деятельности; сохранение и укрепление физического, психологического и социального здоровья обучающихся, обеспечение их безопасности; формирование позитивной мотивации обучающихся к учебной деятельности; обеспечение  условий, учитывающих индивидуально-личностные особенности обучающихся; внедрение в учебно-воспитательный процесс современных образовательных технологий, формирующих ключевые компетенции; приобретение обучающимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления; формирование у обучающихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни; овладение обучающимися общенаучными понятиями: природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки; формирование у учащихся умений проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; развитие познавательных интересов и творческих способностей учащихся и приобретение опыта применения научных методов познания, наблюдения физических явлений, проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; формирование у учащихся умений применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств; формирование у учащихся навыка использования полученных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды; Личностные, метапредметные и предметные результаты освоения учебного предмета, курса С введением ФГОС реализуется смена базовой парадигмы образования со «знаниевой» на «системно-деятельностную», т. е. акцент переносится с изучения основ наук на обеспечение развития УУД (ранее «общеучебных умений») на материале основ наук. Важнейшим компонентом содержания образования, стоящим в одном ряду с систематическими знаниями по предметам, становятся универсальные (метапредметные) умения (и стоящие за ними компетенции).

Личностными результатами обучения физике в основной школе являются:

  • сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся; убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры; самостоятельность в приобретении новых знаний и практических умений; готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями; мотивация образовательной деятельности школьников на основе личностно-ориентированного подхода;

  • формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются: овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий; понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений; умения воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его; опыт самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач; развитие монологической и диалогической речи, умение выражать свои мысли и способность выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение; освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем; умение работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами изучения курса физики являются: умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений; умение применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды; развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы; выражать результаты измерений и расчетов в единицах Международной системы; умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний.

















Учебно-тематический план

9 класс (70 ч).


Название темы

Часы

1

Законы движения и взаимодействия тел

23

2

Механические колебания и волны. Звук.

12

3

Электромагнитное поле

17

4

Строение атома и атомного ядра. Использование энергии атомных ядер.

11

5

Строение и эволюция Вселенной.

4

6

Итоговое обобщение

3



Содержание тем учебного курса.

(70 ч)

Законы взаимодействия и движения тел (23 ч).

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.]1 Импульс. Закон сохранения импульса. Реактивное движение.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

  1. Исследование равноускоренного движения без начальной скорости.

  2. Измерение ускорения свободного падения.

Механические колебания и волны. Звук (12 ч).

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью её распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

  1. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

Электромагнитное поле (17 ч).

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

  1. Изучение явления электромагнитной индукции.

  2. Наблюдение сплошного и линейчатых спектров испускания.

Строение атома и атомного ядра. Использование энергии атомных ядер (11 ч).

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

  1. Измерение естественного радиационного фона дозиметром.

  2. Изучение деления ядра атома урана по фотографии треков.

  3. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.

  4. Изучение треков заряженных частиц по готовым фотографиям.

Строение и эволюция Вселенной (4 ч).

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Итоговое обобщение (3 ч).

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ.

В результате изучения физики в 9 классе ученик должен знать/понимать: • смысл понятий: физическое явление, физический закон, взаимодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения; • смысл физических величин: путь, скорость, ускорение, масса, сила, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия; • смысл физических законов: Ньютона, всемирного тяготения, сохранения импульса и механической энергии. уметь: • описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, механические колебания и волны, электромагнитную индукцию; • использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, силы; • представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и жесткости пружины; • выражать результаты измерений и расчетов в единицах Международной системы (Си); • приводить примеры практического использования физических знаний о механических, электромагнитных и квантовых явлениях; • решать задачи на применение изученных физических законов; • осуществлять самостоятельный поиск информации естественно-научного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в различных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем); • использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для обеспечения безопасности в процессе использования транспортных средств, рационального применения простых механизмов; оценки безопасности радиационного фона. Результаты освоения курса физики Личностные результаты: • сформирование познавательных интересов, интеллектуальных и творческих способностей учащихся; • убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры; • самостоятельность в приобретении новых знаний и практических умений; • мотивация образовательной деятельности школьников на основе личностно ориентированного подхода; • формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, резульатам обучения. Метапредметные результаты: • овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий; • понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений; • формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его; • приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения поставленных задач; • развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение; • освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем; • формирование умений работать в группе с выполнением различных социальных релей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию. Предметные результаты: • знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов. Раскрывающих связь изученных явлений; • умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений; • умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний; • умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды; • формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей; • развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы; • коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации. Перечень учебно- методического обеспечения для учителя:

  1. Громцева О.И. Контрольные и самостоятельные работы по физике. К учебнику А.В. Перышкина «Физика. 9 класс». Москва, «Экзамен», 2017.

  2. Дидактические материалы «Физика 9 класс»/А.Е. Марон, Е.А. Марон,-М.:Просвещение 2016.

  3. Лебедева О.И.. Гурецкая Н.Е. Диагностические работы для проведения промежуточной аттестации 7-9 классы, М.:ВАКО, 2013.

  4. Сборник задач по физике для 7-9 классов/В.И. Лукашик, Е.В. Иванова,-М.:Просвещение, 2017.

  5. Учебник «Физика 9»./А.В. Перышкин.-М.:Дрофа, 2017.




4



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!