СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по геометрии 7-9 класс.

Категория: Геометрия

Нажмите, чтобы узнать подробности

Программа разработана в соответствии с Федеральным государственным образовательным стандартом основного общего и среднего общего образования и на основе авторской программы по геометрии 7-9 классы Л.С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина. /Программы  общеобразовательных учреждений «Геометрия 7 – 9 класс» - М.: Просвещение», составитель Т.А. Бурмистрова, 2014 г. – 95с./

Просмотр содержимого документа
«Рабочая программа по геометрии 7-9 класс.»

  1. Планируемые результаты освоения учебного предмета


Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:


личностные:

1) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

3) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

5) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

6) креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

7) умение контролировать процесс и результат учебной математической деятельности;

8) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;


метапредметные:

1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

5) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

6) умение создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;

7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

8) формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ- компетентности);

9) формирование первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

11) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

15) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;


предметные:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, вектор, координаты) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) овладение навыками устных, письменных, инструментальных вычислений;

4) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

5) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

6) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;

7) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.


Наглядная геометрия

Выпускник научится:

1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

2) распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

3) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

4) вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность научиться:

5) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

6) углубить и развить представления о пространственных геометрических фигурах;

7) применять понятие развёртки для выполнения практических расчётов.


Геометрические фигуры

Выпускник научится:

1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

4) оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изучен ные методы доказательств;

6) решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

7) решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность научиться:

8) овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

10) овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

11) научиться решать задачи на построение методом геометрического места точек и методом подобия;

12) приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

13) приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».


Измерение геометрических величин

Выпускник научится:

1) использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры

угла;

2) вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

3) вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

4) вычислять длину окружности, длину дуги окружности;

5) решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

6) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

7) вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

8) вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.


Координаты

Выпускник научится:

1) вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

2) использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность научиться:

3) овладеть координатным методом решения задач на вычисление и доказательство;

4) приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

5) приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».


Векторы

Выпускник научится:

1) оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

2) находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов,

координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

3) вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность научиться:

4) овладеть векторным методом для решения задач на вычисление и доказательство;

5) приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».


  1. Содержание учебного предмета, курса

7 класс (68ч, 2ч в неделю)

1. Начальные геометрические сведения (7 ч)

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Основная цель - систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений учащихся путем обобщения очевидных или известных из курса математики 1-6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вво­дится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение по­нятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

2. Треугольники (14 ч)

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Основная цель - ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач - на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников - обоснование их равенства с помощью какого-то признака - следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать за­дачи с готовыми чертежами.

3. Параллельные прямые (9 ч)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель - ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

4. Соотношения между сторонами и углами треугольника (16 ч)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Основная цель - рассмотреть новые интересные и важные свойства треугольников. В данной теме доказывается одна из важнейших теорем геометрии - теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

5. Повторение. Решение задач (4 ч)


8 класс (68 ч, 2ч в неделю)

1. Четырехугольники (14 ч)

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Основная цель - изучить наиболее важные виды четырехугольников - параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе

2. Площадь (14 ч)

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора. Площадь четырехугольника.

Основная цель - расширить и углубить полученные в 5-6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии - теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для уча­щихся.

Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади.

Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

3. Подобные треугольники (19 ч)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Основная цель - ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии. Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии - синус, косинус и тангенс острого угла прямоугольного треугольника.

4. Окружность (17 ч)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности. Вписанные и описанные четырехугольники. Окружность Эйлера. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Основная цель - расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах бис­сектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника

5. Повторение. Решение задач (4 ч)


9 класс (68 ч, 2ч в неделю)

1. Векторы. Метод координат (18 ч)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель - научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число). На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

2. Соотношения между сторонами и углами треугольника (11 ч)

Скалярное произведение векторов. Синус, косинус, тангенс и котангенс угла. Теоремы синусов и косинусов. Решение треугольников. Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности. Формула Герона. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель - развить умение учащихся применять тригонометрический аппарат при решении геометрических задач. Синус и косинус любого угла от 00 до 1800 вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников. Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач. Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

3. Длина окружности и площадь круга (12 ч)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель - расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления. В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного n -угольника, если дан правильный n-угольник. Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь - к площади круга, ограниченного окружностью.

4. Движения (8 ч)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения. Примеры движения фигур.

Основная цель - познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

5. Начальные сведения из стереометрии (8 ч)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.

Основная цель - дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел. Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

6. Об аксиомах геометрии (2 ч)

Беседа об аксиомах по геометрии. Понятие об аксиоматическом построении геометрии. Пятый постулат Эвклида и его история.

Основная цель - дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе. В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

7. Повторение. Решение задач (9 ч)

Перечень проектных работ

7 класс

Темы проектов:

Зачем нужны параллельные прямые

Провешивание прямой на местности

История параллельных прямых

38 попугаев или какой у меня рост? (различные единицы длины)

Зависимость количества отрезков от числа точек, отмеченных на прямой

Измерения на местности в истории нашего края

Измерительные приборы – наши помощники

Зачем изучать геометрию. Геометрия вокруг нас

Геометрия - одна из самых древних наук

«Три кита» геометрии, о трех признаках равенства треугольников.

«Замечательные точки треугольника»

«Составление паркета из прямоугольных треугольников»

«Дизайн обоев из треугольников»

«Нарядное одеяло из треугольников»

Параллельность в архитектуре

Иллюзии параллельности при построении чертежей

Неравенства треугольника.

Треугольники вокруг нас. Тайны, которые хранят треугольники.

«Геометрия и искусство»

«Практико-ориентированные геометрические задачи»

«Построение циркулем и линейкой»

«Одна задача – два решения»


8 класс

Темы проектов:

Эти разнообразные четырехугольники.

Четырехугольники вокруг нас.

Семейство четырехугольников.

Четырехугольники на клетчатой бумаге.

Четырехугольники в строительстве и архитектуре.

Ремонт своей комнаты,

Засеваем пришкольный участок,

Определение высоты здания, дерева, расстояния до недоступной точки

Вычисление длины окружности бытовых предметов, имеющих круглую форму (стакан, тарелка, ведро ковер ит.д.), создание различных узоров из окружностей

Составление информационного справочника по изученному материалу


9 класс

Темы проектов:

Векторы в окружающем нас мире;

Царство векторов;

Составление кроссворда по теме «Векторы»;

Решение экспериментальных задач по теме «Векторы»;

Векторы в физике;

Применение векторного метода при решении задач на вычисления и доказательства.

Применение метода координат в различных областях человеческой деятельности

Декарт – основоположник метода координат

Сравнение геометрического метода и метода координат при решении задач

Преимущество использования метода координат при решении задач

Волшебное число «Пи»

Окружность и круг вокруг нас. Окружность и прямая Эйлера

Орнаменты. Уравнения орнаментов

А в окружность я влюбился и на ней остановился

А площадь у вас какая?

Геометрические сказки по теме «Длина окружности»

Создание мультипликационных фильмов. Например: «Свет мой зеркальце, скажи». (зеркальная симметрия), «Движение в природе».

Создание виртуальных моделей. Например:« Движение в архитектуре»

Создание презентации по теме: «Поворот»

Создание презентации по теме: «Параллельный перенос»

«Многогранники в архитектуре»

«Олицетворение многогранников и стихий»

«Развертки многогранников»

Аксиоматическое построение геометрии Евклида до современности

Путешествие в мир аксиом геометрии

Геометрические фигуры в современном мире. Геометрические фигуры вокруг нас

Можно ли считать мир геометрии правильным

Нестандартные задачи по геометрии

Виды симметрии. Симметрия в архитектуре и жизни

О среднем арифметическим, о среднем геометрическом, о среднем квадратичном

3. Тематическое планирование учебного предмета, курса

7 класс, 2 ч. в неделю, всего 68 ч.


Раздел

Темы. Содержание материала

Коли­чество часов

Характеристика основных видов деятельности ученика (на уровне учебных действий)


Глава I. Начальные геометрические сведения

7

Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, раз­вёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вер­тикальными; формулировать и обосновывать утвержде­ния о свойствах смежных и вертикальных углов; объяс­нять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на черте­жах; решать задачи, связанные с этими простейшими фигурами

Начальные геометрические сведения

Прямая и отрезок. Луч и угол

Сравнение отрезков и углов

Измерение отрезков. Измерение углов

Перпендикулярные прямые

Решение задач

Контрольная работа №1

1


1


2


1


1

1


Глава II. Треугольники

14

Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равны­ми; изображать и распознавать на чертежах треуголь­ники и их элементы; формулировать и доказывать тео­ремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из дан­ной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи

Треугольники

Первый признак равенства треугольников

Медианы, биссектрисы и высоты треугольника

Второй и третий признаки ра­венства треугольников

Задачи на построение

Решение задач

Контрольная работа №2


3


3



3

2

2

1



Глава III. Параллельные прямые

9

Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрестлежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах параллельных прямых,

обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы об углах с соответ­ственно параллельными и перпендикулярными сторонами; решать задачи на вычисление, доказательство и построение, свя­занные с параллельными прямыми

Параллельные прямые

Признаки параллельности двух прямых

Аксиома параллельных прямых

Решение задач

Контрольная работа № 3


3


3

2

1


Глава IV. Соотношения между сторо­нами и углами треугольника

16

Формулировать и доказывать теорему о сумме углов тре­угольника и её следствие о внешнем угле треугольника; проводить классификацию треугольников по углам; фор­мулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоуголь­ный треугольник с углом 30°, признаки равенства пря­моугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между па­раллельными прямыми; решать задачи на вычисление, доказательство и построение, связанные с соотношения­ми между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости про­водить по ходу решения дополнительные построения, со­поставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи

Соотношения между сторо­нами и углами треугольника

Сумма углов треугольника

Соотношения между сторонами и углами треугольника

Контрольная работа № 4 Прямоугольные треугольники

Построение треугольника по трём элементам

Решение задач

Контрольная работа № 5


2



3

1


4



2

3

1


Повторение. Решение задач

4



8 класс


Раздел

Темы. Содержание материала

Коли­чество часов

Характеристика основных видов деятельности ученика (на уровне учебных действий)


Глава V. Четырёхугольники

14

Объяснять, что такое ломаная, многоугольник, его вер­шины, смежные стороны, диагонали, изображать и рас­познавать многоугольники на чертежах; показывать эле­менты многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого много­угольника; изображать и распознавать выпуклые и невы­пуклые многоугольники; формулировать и доказывать утверждения о сумме углов выпуклого многоугольника и сумме его внешних углов; объяснять, какие стороны (вер­шины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеций, прямоуголь­ника, ромба, квадрата; изображать и распознавать эти четырёхугольники; формулировать и доказывать утверж­дения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанные с этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно прямой (точки), в каком случае фигура называется симметричной

Четырёхугольники

Многоугольники

Параллелограмм и трапеция

Прямоугольник, ромб, квадрат

Решение задач

Контрольная работа №1

2


6


4

1 1


Глава VI. Площадь

14

Объяснять, как производится измерение площадей мно­гоугольников, какие многоугольники называются равно­великими и какие равносоставленными; формулировать основные свойства площадей и выводить с их помощью формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; формулировать и доказывать те­орему об отношении площадей треугольников, имеющих по равному углу; формулировать и доказывать теорему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и те­оремой Пифагора

Площадь

Площадь многоугольника

Площади параллелограмма, тре­угольника и трапеции

Теорема Пифагора

Решение задач

Контрольная работа №2


2



6

3 2 1


Глава VII. Подобные треугольники

19

Объяснять понятие пропорциональности отрезков; фор­мулировать определения подобных треугольников и ко­эффициента подобия; формулировать и доказывать тео­ремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о про­порциональных отрезках в прямоугольном треугольнике; объяснять, что такое метод подобия в задачах на постро­ение, и приводить примеры применения этого метода; объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности; объяснять, как ввести понятие подобия для произвольных фигур; формулировать определения и иллюстрировать понятия синуса, косинуса и тангенса острого угла прямо­угольного треугольника; выводить основное тригономе­трическое тождество и значения синуса, косинуса и тан­генса для углов 30°, 45°, 60°; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций использовать компьютер­ные программы

Подобные треугольники

Определение подобных треуголь­ников

Признаки подобия треугольников

Контрольная работа №3

Применение подобия к доказа­тельству теорем и решению задач

Соотношения между сторонами и углами прямоугольного тре­угольника

Контрольная работа №4


2


5

1



7




3

1


Глава VIII. Окружность

17

Исследовать взаимное расположение прямой и окружно­сти; формулировать определение касательной к окруж­ности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках каса­тельных, проведённых из одной точки; формулировать понятия центрального угла и градусной меры дуги окруж­ности; формулировать и доказывать теоремы: о вписан­ном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы, связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис тре­угольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров к сторонам треугольника; о пересечении высот треуголь­ника; формулировать определения окружностей, вписан­ной в многоугольник и описанной около многоугольника; формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об окружности, описанной око­ло треугольника; о свойстве сторон описанного четы­рёхугольника; о свойстве углов вписанного четырёхугольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольниками и четырёхугольниками; исследовать свойства конфигураций, связанных с окруж­ностью, с помощью компьютерных программ

Окружность

Касательная к окружности

Центральные и вписанные углы

Четыре замечательные точки тре­угольника

Вписанная и описанная окруж­ности

Решение задач

Контрольная работа №5


3


4


3


4

2

1


Повторение. Решение задач

4




9 класс


Раздел

Темы. Содержание материала

Коли­чество часов

Характеристика основных видов деятельности ученика (на уровне учебных действий)


Повторение курса геометрии 8 класса

2



Глава IX. Векторы

8

Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов; мотивировать введение понятий и действий, связанных с векторами, соответствующими примерами, относящи­мися к физическим векторным величинам; применять векторы и действия над ними при решении геометриче­ских задач

Векторы

Метод координат

Понятие вектора

Сложение и вычитание векторов

Умножение вектора на число. Применение векторов к решению задач

2


3



3

Глава X. Метод координат

10

Объяснять и иллюстрировать понятия прямоугольной си­стемы координат, координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой

Координаты вектора

Простейшие задачи в коорди­натах

Уравнения окружности и прямой

Решение задач

Контрольная работа №1

2


2


3

2

1


Глава XI. Соотношения между сторо­нами и углами треугольника. Ска­лярное произведение векторов

11

Формулировать и иллюстрировать определения синуса, косинуса, тангенса и котангенса углов от 0 до 180°; вы­водить основное тригонометрическое тождество и фор­мулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении тре­угольников; объяснять, как используются тригонометри­ческие формулы в измерительных работах на местности; формулировать определения угла между векторами и скалярного произведения векторов; выводить формулу скалярного произведения через координаты векторов; формулировать и обосновывать утверждение о свойствах скалярного произведения; использовать скалярное про­изведение векторов при решении задач

Соотношения между сторо­нами и углами треугольника. Ска­лярное произведение векторов

Синус, косинус, тангенс, котан­генс угла

Соотношения между сторонами и углами треугольника

Скалярное произведение векто­ров

Решение задач

Контрольная работа №2


3



4


2

1

1


Глава XII. Длина окружности и пло­щадь круга

12

Формулировать определение правильного многоуголь­ника; формулировать и доказывать теоремы об окруж­ностях, описанной около правильного многоугольника и вписанной в него; выводить и использовать форму­лы для вычисления площади правильного многоуголь­ника, его стороны и радиуса вписанной окружности; решать задачи на построение правильных многоуголь­ников; объяснять понятия длины - окружности и площа­ди круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кру­гового сектора; применять эти формулы при решении задач

Длина окружности и пло­щадь круга

Правильные многоугольники

Длина окружности и площадь круга

Решение задач

Контрольная работа № 3


4


4

3

1


Глава XIII. Движения

8

Объяснять, что такое отображение плоскости на себя и в каком случае оно называется движением плоскости; объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движе­ниями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных про­грамм

Движения

Понятие движения

Параллельный перенос и поворот

Решение задач

Контрольная работа № 4

3


3

1

1


Глава XIV. Начальные сведения из стереометрии

8

Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, что такое n-угольная призма, её основания, боковые грани и боковые рёбра, какая призма называет­ся прямой и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой па­раллелепипед называется прямоугольным; формулиро­вать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоуголь­ного параллелепипеда; объяснять, что такое объём мно­гогранника; объ­яснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рё­бра и высота пирамиды, какая пирамида называется пра­вильной, что такое апофема правильной пирамиды, объяснять, какое тело называется цилиндром, что такое его ось, высота, осно­вания, радиус, боковая поверхность, образующие, раз­вёртка боковой поверхности, какими формулами выража­ются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образую­щие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверх­ности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диа­метр сферы (шара), распозна­вать на рисунках призму, параллелепипед, пирамиду, ци­линдр, конус, шар

Начальные сведения из стереометрии

Многогранники

Тела и поверхности вращения

4

4


Об аксиомах планиметрии

2



Повторение. Решение задач.

7





СОГЛАСОВАНО


Протокол заседания методического объединения учителей СОШ № 53

от ___________ 2018 года № 1

___________ Калабина Т.Т.

подпись руководителя МО Ф.И.О.



СОГЛАСОВАНО


Заместитель директора по УВР

_______________ Минакова Е.Г.

подпись Ф.И.О.

______________ 2018 года