ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ
УЧЕБНОГО ПРЕДМЕТА
Личностными результатами обучения геометрии являются:
-
умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной
-
задачи, выстраивать аргументацию, приводить примеры и контр примеры;
-
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
-
представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
-
креативность мышления, инициатива, находчивость, активность при решении математических задач;
-
умение контролировать процесс и результат учебной математической деятельности;
-
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
Метапредметными результатами обучения геометрии являются:
-
первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
-
умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
-
умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
-
умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
-
умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
-
умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
-
понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
-
умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
-
умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
Общими предметными результатами обучения геометрии являются:
-
овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
-
решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
-
устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
-
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
-
моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
-
описания реальных ситуаций на языке геометрии;
-
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Глава 1. Начальные геометрические сведения
Начальные понятия планиметрии. Геометрические фигуры. Понятие о равенстве фигур. Отрезок. Равенство отрезков. Длина отрезка и ее свойства. Угол. Равенство углов. Величина угла и ее свойства. Смежные и вертикальные углы и их свойства. Перпендикулярные прямые.
Основная цель - систематизировать знания учащихся об основных свойствах простейших геометрических фигур, ввести понятие равенства фигур.
Основное внимание в учебном материале этой темы уделяется двум аспектам: понятию равенства геометрических фигур (отрезков и углов) и свойствам измерения отрезков и углов, что находит свое отражение в заданной системе упражнений.
Изучение данной темы должно также решать задачу введения терминологии, развития навыков изображения планиметрических фигур и простейших геометрических конфигураций, связанных с условиями решаемых задач. Решение задач данной темы следует использовать для постепенного формирования у учащихся навыков применения свойств геометрических фигур как опоры при решении задач, первоначально проговаривая их в ходе решения устных задач.
Глава 2. Треугольники
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Основные задачи на построение с помощью циркуля и линейки.
Основная цель - сформировать умение доказывать равенство данных треугольников, опираясь на изученные признаки; отработать навыки решения простейших задач на построение с помощью циркуля и линейки.
При изучении темы следует основное внимание уделить формированию у учащихся умения доказывать равенство треугольников, т. е. выделять равенство трех соответствующих элементов данных треугольников и делать ссылки на изученные признаки. На начальном этапе изучения темы полезно больше внимания уделять использованию средств наглядности, решению задач по готовым чертежам.
Глава 3. Параллельные прямые
Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.
Основная цель - дать систематические сведения о параллельности прямых; ввести аксиому параллельных прямых.
Знания признаков параллельности прямых, свойств углов при параллельных прямых и секущей находят широкое применение в дальнейшем курсе геометрии при изучении четырехугольников, подобия треугольников, а также в курсе стереометрии. Отсюда следует необходимость уделить значительное внимание формированию умений доказывать параллельность прямых с использованием соответствующих признаков, находить равные утлы при параллельных прямых и секущей.
Глава 4. Соотношения между сторонами и углами треугольника
Сумма углов треугольника. Соотношения между сторонами и углами треугольника. Неравенство треугольника. Некоторые свойства прямоугольных треугольников. Признаки равенства прямоугольных треугольников. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Задачи на построение.
Основная цель - расширить знания учащихся о треугольниках.
В данной теме рассматривается одна из важнейших теорем курса — теорема о сумме углов треугольника, в которой впервые формулируется неочевидный факт. Теорема позволяет получить важные следствия — свойство внешнего угла треугольника, некоторые свойства и признаки прямоугольных треугольников.
При введении понятия расстояния между параллельными прямыми у учащихся формируется представление о параллельных прямых как равноотстоящих друг от друга (точка, движущаяся по одной из параллельных прямых, все время находится на одном и том же расстоянии от другой прямой), что будет использоваться в дальнейшем курсе геометрии и при изучении стереометрии.
При решении задач на построение в VII классе рекомендуется ограничиваться только выполнением построения искомой фигуры циркулем и линейкой. В отдельных случаях можно проводить устно анализ и доказательство, а элементы исследования могут присутствовать лишь тогда, когда это оговорено условием задачи.
Повторение. Решение задач.
Систематизация и обобщение полученных знаний за курс геометрии 7 класса, решение задач по всем темам, применение изученных свойств в комплексе при решении задач.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С УКАЗАНИЕМ КОЛИЧЕСТВА ЧАСОВ, ОТВОДИМЫХ НА ОСВОЕНИЕ КАЖДОЙ ТЕМЫ
Название раздела (темы, главы) с указанием содержания материала | Кол-во часов | Основные виды учебной деятельности |
Первоначальные геометрические сведения Прямая и отрезок. Луч и угол. Сравнение отрезков и углов. Измерение отрезков. Измерение углов. Перпендикулярные прямые. Решение задач Контрольная работа № 1 | 10 2 1 3 2 1 1 | Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами. |
Треугольники Первый признак равенства треугольников Медианы, биссектрисы и высоты треугольника Второй и третий признаки равенства треугольников Задачи на построение Решение задач Контрольная работа № 2 | 17 3 3 4 3 3 1 | Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи. |
Параллельные прямые Признаки параллельности двух прямых Аксиома параллельных прямых Решение задач Контрольная работа № 3 | 13 4 5 3 1 | Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы об углах с соответственно параллельными и перпендикулярными сторонами; приводить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми. |
Соотношения между сторонами и углами треугольника Сумма углов треугольника Соотношения между сторонами и углами треугольника Контрольная работа № 4 Прямоугольные треугольники Построение треугольника по трем элементам Решение задач Контрольная работа № 5 | 18 2 3 1 4 4 3 1 | Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольника; проводить классификацию треугольников по углам; формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоугольный треугольник с углом 30°, признаки равенства прямоугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми; решать задачи на вычисление, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи. |
Повторение Повторение материала за курс 7 класса | 10 | |
Резерв | 2 | |
8