СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по геометрии 7 класс

Категория: Геометрия

Нажмите, чтобы узнать подробности

Рабочая программа по геометрии 7 класс на 2 часа в неделю (,Атанасян).Содержит пояснительную записку и тематическое планирование

Просмотр содержимого документа
«Рабочая программа по геометрии 7 класс»

Нормативно-правовые документы, локальные акты ОУ и методические пособия, на основании которых разработана рабочая программа:

  • Федеральный Закон Российской Федерации от 29.12.2012 № 273-ФЗ
    «Об образовании в Российской Федерации»;

  • Приказ Министерства образования и науки РФ от 31.12.2015г. № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897»;

  • Приказ Министерства просвещения Российской Федерации
    от 28.12.2016 № 345 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования”;

  • Приказ Министерства образования и науки Российской Федерации
    от 09.06.2016 № 699 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»;

  • Распоряжение Комитета по образованию от 03.04.2019 № 10101-р
    «О формировании календарного учебного графика образовательных учреждений Санкт-Петербурга, реализующих основные общеобразовательные программы
    в 2019/2020 учебном году»;

  • Основная образовательная программа основного общего образования ГБОУ СОШ №237;

  • Учебный план ГБОУ СОШ № 237 на 2019-2020 учебный год;

  • Положение о рабочей программе ГБОУ СОШ №237;

  • Геометрия. Сборник рабочих программ.7-9 классы: пособие для учителей общеобраз. Организаций/[совт. Т. А. Бурмистрова].-2-е изд. дораб.- М. Просвещение, 2018.


Планируемые результаты освоения учебного предмета

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

  1. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и по- знанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

  2. формирование целостного мировоззрения, соответствующего современному уровню развития науки и обществен- ной практики;

  3. формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно- исследовательской, творческой и других видах деятельности;

  4. умение ясно, точно, грамотно излагать свои мысли в уст- ной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  6. креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

  7. умение контролировать процесс и результат учебной математической деятельности;

  8. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

  1. умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  2. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  3. умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  4. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

  5. умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  6. умение создавать, применять и преобразовывать знаково- символические средства, модели и схемы для решения учебных и познавательных задач;

  7. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

  8. формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

  9. формирование первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  10. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  11. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  12. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  15. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  16. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  17. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

  1. овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, вектор, координаты) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  2. умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

  3. овладение навыками устных, письменных, инструментальных вычислений;

  4. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

  5. усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

  6. умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;

  7. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.




Содержание курса


Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника.

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трём сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на n равных частей.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число π; длина дуги окружности. Градусная мера угла.

Решение задач на вычисление и доказательство с использованием изученных формул.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление логических связок если ..., то ..., в том и только в том случае, логические связки и, или.

Геометрия в историческом развитии. От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. История числа π. Золотое сечение.

«Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма.

Планируемые результаты

изучения курса геометрии в 7 классе
Наглядная геометрия

Выпускник научится:

  1. распознавать на чертежах, рисунках, моделях и в окружающем мире плоские геометрические фигуры;

  2. определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

  3. вычислять объём прямоугольного параллелепипеда.

Геометрические фигуры

Выпускник научится:

  1. пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  2. распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  3. находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

  4. решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  5. решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

  6. решать простейшие планиметрические задачи в пространстве.

  7. Выпускник получит возможность:

  8. овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

  9. приобрести опыт применения алгебраического аппарата и идей движения при решении геометрических задач;

  10. овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  11. научиться решать задачи на построение методом геометрического места точек и методом подобия;

  12. приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

  13. приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

  1. использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

  2. вычислять длины линейных элементов фигур и их углы, используя формулы

  3. решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

  4. Выпускник получит возможность:

  5. вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

  6. вычислять площади многоугольников,

  7. приобрести опыт применения алгебраического аппарата.


Тематическое планирование


Номер пара- графа

Содержание материала

Коли- чество часов

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

7 класс

Глава I. Начальные геометрические

сведения

11

Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами

1, 2


3


4, 5



6

Прямая и отрезок. Луч и угол

Сравнение отрезков и углов

Измерение отрезков. Измерение углов

Перпендикулярные прямые

Решение задач

Контрольная работа № 1

2


1


3



2


2


1

Глава II. Треугольники

18

Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи

1



2



Первый признак равенства треугольников


Медианы, биссектрисы и высоты треугольника


Второй и третий признаки равенства треугольников

Задачи на построение

Решение задач

Контрольная работа № 2

3



3



4



3


4


1

3



4

Глава III. Параллельные прямые

13

Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы об углах с соответственно параллельными и перпендикулярными сторонами; приводить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми

1



2

Признаки параллельности двух прямых


Аксиома параллельных прямых


Решение задач


Контрольная работа № 3

4



5



3


1




Глава IV. Соотношения между сторо-

нами и углами треугольника

20

Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольника, проводить классификацию треугольников по углам; формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоугольный треугольник с углом 30°, признаки равенства прямоугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми; решать задачи на вычисления, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи

1


2





3


4

Сумма углов треугольника


Соотношения между сторонами и углами треугольника


Контрольная работа № 4


Прямоугольные треугольники


Построение треугольника по трём элементам


Решение задач


Контрольная работа № 5

2


3



1


4


4



5


1


Повторение
Решение задач
Итоговая контрольная работа

6

5

1



ВСЕГО

68