МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
«ПАРТЕНИТСКАЯ ШКОЛА» ГОРОДА АЛУШТЫ
«Рассмотрено» Руководитель ШМО естественно-математического цикла | «Согласовано» Заместитель директора МОУ «Партенитская школа» г. Алушты | «Утверждено» Директор МОУ «Партенитская школа» г. Алушты |
________/Л.Ю.Старченко/ Протокол № __ «__» __________ 2019 г. | _______/О.В. Савчук/ «__» ________ 2019 г. | ________/ А.А.Луст Приказ № ___ «__» __________ 2019 г. |
РАБОЧАЯ ПРОГРАММА
по геометрии
в 11 классе
Учитель Старченко Людмила Юрьевна
2019-20120 учебный год
Рабочая программа по геометрии для 11 класса разработана на основе авторской программы Геометрия. Программы общеобразовательных заведений. 10-11 классы/ Сост. Т.А. Бурмистрова – Москва: «Просвещение», 2010. и учебника: Геометрия. 10-11 классы: учеб, для общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. - М.: Просвещение, 2014.
Федеральный базисный план отводит 68 часов для образовательного изучения геометрии в 11 классе из расчёта 2 часа в неделю. В соответствии с этим реализуется программа в объеме 68 часов (2 часа в неделю, 34учебные недели)
Цель изучения:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно- технического прогресса;
приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Задачи изучения:
развить пространственные представления и изобразительные умения; освоить основные факты и методы стереометрии, познакомиться с простейшими пространственными телами и их свойствами;
овладеть символическим языком математики, выработать формально- оперативные математические умения и научиться применять их к решению геометрических задач;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ
В результате изучения геометрии на базовом уровне ученик должен
знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой геометрии, для формирования и развития математической науки; историю возникновения и развития геометрии;
универсальный характер законов логики геометрических рассуждений, их применимость во всех областях человеческой деятельности;
уметь
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Глава : Метод координат в пространстве. Движения (15 часов).
Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Простейшие задачи в координатах. Угол между векторами. Вычисление углов между прямыми и плоскостями. Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос.
Знать:
понятие прямоугольной системы координат в пространстве;
понятие координат вектора в прямоугольной системе координат;
понятие радиус-вектора произвольной точки пространства
формулы координат середины отрезка, длины вектора через его координаты, расстояние между двумя точками;
понятие угла между векторами;
понятие скалярного произведения векторов;
формулу скалярного произведения в координатах;
свойства скалярного произведения;
понятие движения пространства и основные виды движения
Уметь:
строить точки в прямоугольной системе координат по заданным её координатам и находить координаты точки в заданной системе координат;
выполнять действия над векторами с заданными координатами;
доказывать, что координаты точки равны соответствующим координатам её радиус-вектора, координаты любого вектора равны разностям соответствующих координат его конца и начала;
решать простейшие задачи в координатах;
вычислять скалярное произведение векторов и находить угол между векторами по их координатам;
вычислять углы между прямыми и плоскостям;
строить симметричные фигуры.
Глава VI. Цилиндр, конус и шар (17 часов).
Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости Касательная плоскость к сфере. Площадь сферы.
Знать:
понятие цилиндрической поверхности, цилиндра и его элементов (боковая поверхность, основания, образующие, ось, высота, радиус;
формулы для вычисления площадей боковой и полной поверхностей цилиндра;
понятие конической поверхности, конуса и его элементов (боковая поверхность, основание, вершина, образующая, ось, высота), усечённого конуса;
формулы для вычисления площадей боковой и полной поверхностей конуса и усечённого конуса;
понятия сферы, шара и их элементов(центр, радиус, диаметр);
уравнение сферы в заданной прямоугольной системе координат;
взаимное расположение сферы и плоскости;
теоремы о касательной плоскости к сфере;
формулу площади сферы.
Уметь:
решать задачи на вычисление боковой и полной поверхностей цилиндра;
решать задачи на вычисление боковой и полной поверхностей конуса и усечённого конуса;
решать задачи на вычисление площади сферы.
Глава VII. Объёмы тел (23 часа).
Понятие объёма. Объём прямоугольного параллелепипеда. Объём прямой призмы. Объём цилиндра. Вычисление объёмов тел с помощью определенного интеграла. Объём наклонной призмы. Объём пирамиды. Объём конуса. Объём шара. Объём шарового сегмента, шарового слоя и шарового сектора. Площадь сферы.
Знать:
понятие объёма, основные свойства объёма;
формулы нахождения объёмов призмы, в основании которой прямоугольный треугольник и прямоугольного параллелепипеда;
правило нахождения прямой призмы;
что такое призма, вписана и призма описана около цилиндра;
формулу для вычисления объёма цилиндра;
способ вычисления объёмов тел с помощью определённого интеграла, основную формулу для вычисления объёмов тел;
формулу нахождения объёма наклонной призмы;
формулы вычисления объёма пирамиды и усечённой пирамиды;
формулы вычисления объёмов конуса и усечённого конуса;
формулу объёма шара;
определения шарового слоя, шарового сегмента, шарового сектора, формулы для вычисления их объёмов;
формулу площади сферы.
Уметь:
Объяснять, что такое объём тела, перечислять его свойства и применять эти свойства в несложных ситуациях;
применять формулы нахождения объёмов призмы при решении задач;
решать задачи на вычисления объёма цилиндра;
воспроизводить способ вычисления объёмов тел с помощью определённого интеграла;
применять формулу нахождения объёма наклонной призмы при решении задач;
решать задачи на вычисление объёмов пирамиды и усечённой пирамиды;
применять формулы вычисления объёмов конуса и усечённого конуса при решении задач применять формулу объёма шара при решении задач;
различать шаровой слой, сектор, сегмент и применять формулы для вычисления их объёмов в несложных задачах;
применять формулу площади сферы при решении задач.
Обобщающее повторение. Решение задач ( 13 часов).
Параллельность прямых и плоскостей. Перпендикулярность прямых и плоскостей. Многогранники. Метод координат в пространстве.
Цилиндр, конус и шар. Объёмы тел.
Знать:
основные определения и формулы изученные в курсе геометрии.
Уметь:
применять формулы при решении задач.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
№п/п | Раздел | Количество часов | Кол-во контрольных работ |
1 | Метод координат в пространстве. | 15 | 2 |
2 | Цилиндр, конус, шар | 17 | 1 |
3 | Объемы тел | 23 | 2 |
4 | Обобщающее повторение. | 13 | 1 |
| Итого | 68 | 6 |
Тематика контрольных работ
Контрольная работа № 1 по теме: « Простейшие задачи в координатах»
Контрольная работа № 2 по теме: «Метод координат в пространстве. Движения » Контрольная работа № 3 по теме: «Тела вращения»
Контрольная работа № 4 по теме: « Объем цилиндра, конуса, пирамиды, призмы» Контрольная работа № 5 по теме: «Объемы шара и его частей. Площадь сферы »
Итоговая контрольная работа по стереометри № 6
Лист коррекции рабочей программы
Класс | Название раздела, темы | Дата проведения по плану | Причина корректировки | Дата проведения по факту |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |