СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
Рабочая программа по алгебре 5-9 классы к учебникам Н.В.Виленкин (5, 6 классы), Ю.Н.Макарычев (7-9 классы) рассчитана на 850 часов на 5 лет. В каждом классе по 5 часов в неделю по математике в 5-6 классах и по 3 часа в неделю по алгебре в 7-9 классах.
Программа составлена по всем требования ФГОС, включая регулятивные УУД. Содержание учечбного материала предствлено по предметам и по классам.
Муниципальное казенное общеобразовательное учреждение
Стадницкая основная общеобразовательная школа
Семилукского муниципального района Воронежской области
Рассмотрена и рекомендована к утверждению на заседании методического объединения учителей _______________________ _______________________________
Протокол №1 от « » августа 2018 г.
| Принято педагогическим советом МКОУ Стадницкой ООШ
Протокол № ___ от « » августа 2018 г. |
«Утверждаю» Директор МКОУ Стадницкой ООШ
___________________ А.Т. Калинин Приказ № ___ от «_____» августа 2018 г. |
Рабочая учебная
программа по математике
(в соответствии с ФГОС)
Уровень, ступень образования: базовый, основная.
Срок реализации программы: 5 лет.
Рабочую учебную
программу составила:
учитель математики
РогозинаА.В.
с.Стадница
2018
Рабочая программа составлена на основе следующих нормативно-правовых документов
Федеральный закон от 29 декабря 2012 № 273 ФЗ «Об образовании в Российской Федерации».
Приказ Минобрнауки России от 17.12.2010 г. № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования».
Программы курса: Математика. ФГОС. 5-9 класс. Н.В. Виленкин, В.И.Жохов, М.: Мнемозина, 2013г; Алгебра 7-9 классы. Ю.Н.Макарычев и др. – М.: Просвещение, 2014.
Приказ Министерства образования и науки России от 31 марта 2014 года № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»;
Постановления Главного государственного санитарного врача Российской Федерации от 29.12.2010 № 189 «Об утверждении СанПин 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»;
6. Учебного плана МКОУ Стадницкой ООШ на 2018-2019 учебный год для 5-9 классов.
7. Положения о рабочей программе. Приказ № 22 от 30.08.2017г.
Место предмета в учебном плане МКОУ Стадницкой ООШ
Математика в основной школе изучается с 5 по 9 классы. Общее число учебных часов за пять лет обучения — 850, из них по 170 ч (5 ч в неделю); по 102 ч на алгебру (3 ч в неделю) и 68 ч. на геометрию (2 ч в неделю) в 7-9 классах.
В соответствии с учебным планом МКОУ Стадницкой ООШ на 2018-2019 учебный год; количество часов на год по программе – 170 , количество часов в неделю – 5.
Данная рабочая программа ориентирована на использование учебников по математике и учебно-методических пособий под руководством Бунимович Е.А.
Рабочая программа составлена для работы по учебникам:
Математика, 5 кл.: учебник для общеобразовательных учреждений/ Н.В. Виленкин, В.И.Жохов, А.С.Чесноков, С.И. Шварцбурд, – М.: Мнемозина, 2013.
Математика, 6 кл.: учебник для общеобразовательных учреждений/ Н.В. Виленкин, В.И.Жохов, А.С.Чесноков, С.И. Шварцбурд, – М.: Мнемозина, 2013.
Алгебра, 7 кл.: учебник для общеобразовательных учреждений / Ю.Н.Макарычев и др. – М.: Просвещение, 2014.
Алгебра, 8 кл.: учебник для общеобразовательных учреждений / / Ю.Н.Макарычев и др. – М.: Просвещение, 2014.
Алгебра, 9 кл.: учебник для общеобразовательных учреждений / Ю.Н.Макарычев и др. – М.: Просвещение, 2014.
Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, «Геометрия.7-9 классы
– М.: Просвещение, 2013.
Результаты изучения учебного предмета
Личностным результатом обучения математики в основной школе является формирование всесторонне образованной, инициативной и успешной личности, обладающей системой современных мировоззренческих взглядов, ценностных ориентаций, идейно-нравственных, культурных и этических принципов и норм поведения.
Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Математика» («Алгебра» и «Геометрия») являются следующие качества:
– независимость и критичность мышления;
– воля и настойчивость в достижении цели.
Средством достижения этих результатов является:
– система заданий учебников;
– представленная в учебниках в явном виде организация материала по принципу минимакса;
– использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно-деятельностного подхода в обучении, технология оценивания.
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
5–6-й классы
– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
– выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
7–9-й классы
– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;
– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
– планировать свою индивидуальную образовательную траекторию;
– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
– в ходе представления проекта давать оценку его результатам;
– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
– уметь оценить степень успешности своей индивидуальной образовательной деятельности;
– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).
Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
5–9-й классы
– анализировать, сравнивать, классифицировать и обобщать факты и явления;
– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
– создавать математические модели;
– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
– вычитывать все уровни текстовой информации.
– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.
Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.
– Использование математических знаний для решения различных математических задач и оценки полученных результатов.
– Совокупность умений по использованию доказательной математической речи.
– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.
– Умения использовать математические средства для изучения и описания реальных процессов и явлений.
– Независимость и критичность мышления.
– Воля и настойчивость в достижении цели.
Коммуникативные УУД:
5–9-й классы
– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
– в дискуссии уметь выдвинуть контраргументы;
– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно-деятельностного обучения.
Предметными результатами изучения предмета «Математика» являются следующие умения.
5-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание:
названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);
как образуется каждая следующая счётная единица;
названия и последовательность разрядов в записи числа;
названия и последовательность первых трёх классов;
сколько разрядов содержится в каждом классе;
соотношение между разрядами;
сколько единиц каждого класса содержится в записи числа;
как устроена позиционная десятичная система счисления;
единицы измерения величин (длина, масса, время, площадь), соотношения между ними; десятичных дробях и правилах действий с ними;
- сравнивать десятичные дроби;
- выполнять операции над десятичными дробями;
- преобразовывать десятичную дробь в обыкновенную и наоборот;
- округлять целые числа и десятичные дроби;
находить приближённые значения величин с недостатком и избытком;
выполнять приближённые вычисления и оценку числового выражения;
функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).
Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;
выполнять умножение и деление с 1000;
вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;
решать простые и составные текстовые задачи;
выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;
находить вероятности простейших случайных событий;
решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;
решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;
читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;
строить простейшие линейные, столбчатые и круговые диаграммы;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
6-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- раскладывать натуральное число на простые множители;
- находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;
- отношениях и пропорциях; основном свойстве пропорции;
- прямой и обратной пропорциональных зависимостях и их свойствах;
- процентах;
- целых и дробных отрицательных числах; рациональных числах;
правиле сравнения рациональных чисел;
правилах выполнения операций над рациональными числами; свойствах операций.
делить число в данном отношении;
находить неизвестный член пропорции;
находить данное количество процентов от числа и число по известному количеству процентов от него;
находить, сколько процентов одно число составляет от другого;
увеличивать и уменьшать число на данное количество процентов;
решать текстовые задачи на отношения, пропорции и проценты;
сравнивать два рациональных числа;
выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;
решать комбинаторные задачи с помощью правила умножения;
находить вероятности простейших случайных событий;
решать простейшие задачи на осевую и центральную симметрию;
решать простейшие задачи на разрезание и составление геометрических фигур;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
7-й класс.
Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
натуральных, целых, рациональных, иррациональных, действительных числах;
степени с натуральными показателями и их свойствах;
одночленах и правилах действий с ними;
многочленах и правилах действий с ними;
формулах сокращённого умножения;
тождествах; методах доказательства тождеств;
линейных уравнениях с одной неизвестной и методах их решения;
системах двух линейных уравнений с двумя неизвестными и методах их решения.
Выполнять действия с одночленами и многочленами;
узнавать в выражениях формулы сокращённого умножения и применять их;
раскладывать многочлены на множители;
выполнять тождественные преобразования целых алгебраических выражений;
доказывать простейшие тождества;
находить число сочетаний и число размещений;
решать линейные уравнения с одной неизвестной;
решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;
решать текстовые задачи с помощью линейных уравнений и систем;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
8-й класс.
Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
алгебраической дроби; основном свойстве дроби;
правилах действий с алгебраическими дробями;
степенях с целыми показателями и их свойствах;
стандартном виде числа;
функциях ,
,
, их свойствах и графиках;
понятии квадратного корня и арифметического квадратного корня;
свойствах арифметических квадратных корней;
функции , её свойствах и графике;
формуле для корней квадратного уравнения;
теореме Виета для приведённого и общего квадратного уравнения;
основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;
методе решения дробных рациональных уравнений;
основных методах решения систем рациональных уравнений.
Сокращать алгебраические дроби;
выполнять арифметические действия с алгебраическими дробями;
использовать свойства степеней с целыми показателями при решении задач;
записывать числа в стандартном виде;
выполнять тождественные преобразования рациональных выражений;
строить графики функций ,
,
и использовать их свойства при решении задач;
вычислять арифметические квадратные корни;
применять свойства арифметических квадратных корней при решении задач;
строить график функции и использовать его свойства при решении задач;
решать квадратные уравнения;
применять теорему Виета при решении задач;
решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;
решать дробные уравнения;
решать системы рациональных уравнений;
решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
9-й класс.
Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
свойствах числовых неравенств;
методах решения линейных неравенств;
свойствах квадратичной функции;
методах решения квадратных неравенств;
методе интервалов для решения рациональных неравенств;
методах решения систем неравенств;
свойствах и графике функции при натуральном n;
определении и свойствах корней степени n;
степенях с рациональными показателями и их свойствах;
определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;
определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;
формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.
Использовать свойства числовых неравенств для преобразования неравенств;
доказывать простейшие неравенства;
решать линейные неравенства;
строить график квадратичной функции и использовать его при решении задач;
решать квадратные неравенства;
решать рациональные неравенства методом интервалов;
решать системы неравенств;
строить график функции при натуральном nи использовать его при решении задач;
находить корни степени n;
использовать свойства корней степени nпри тождественных преобразованиях;
находить значения степеней с рациональными показателями;
решать основные задачи на арифметическую и геометрическую прогрессии;
находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
Содержание учебного предмета
Математика (5 класс, 170 часов)
Математика 5 класс.
Повторение.
Натуральные числа и шкалы.
Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, многоугольник. Измерение и построение отрезков. Координатный луч.
Основная цель — систематизировать и обобщать сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.
Систематизация сведений о натуральных числах позволяет восстановить у учащихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков. Рассматриваются простейшие комбинаторные задачи.
Вводятся понятия координатного луча, единичного отрезка и координаты точки. Начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному штриху на координатном луче.
Сложение и вычитание натуральных чисел.
Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.
Основная цель — закрепить и развить навыки сложения и вычитания натуральных чисел.
Начиная с этой темы главное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями. Начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе записи мости между компонентами действий (сложение и вычитание).
4. Умножение и деление натуральных чисел.
Умножение и деление натуральных чисел, свойства умножения. Степень числа. Квадрат и куб числа. Решение текстовых задач.
Основная цель — закрепить и развить навыки арифметических действий с натуральными числами.
Проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия степени (с натуральным показателем), квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.
Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (и...)», а также задачи на известные учащимся зависимости между величинами (скоростью, временем и пройденным путем; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении задач на части с помощью составления уравнений учащиеся впервые встречаются с уравнениями, и левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.
5. Площади и объемы.
Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.
Основная цель — расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.
При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.
6. Обыкновенные дроби.
Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.
Основная цель — познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.
Изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа и представлению смешанного числа
в виде неправильной дроби. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся.
Десятичные дроби. Сложение и вычитание десятичных дробей.
Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей. Решение текстовых задач.
Основная цель — выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.
При введении десятичных дробей важно добиться у учащихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.
Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.
Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.
При изучении операции округления числа вводится новое понятие — приближенное значение числа, отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.
8. Умножение и деление десятичных дробей .
Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.
Основная цель — выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.
Главное внимание уделяется алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.
9. Инструменты для вычислений и измерений .
Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол. Величина (градусная мера) угла. Чертежный треугольник. Измерение углов. Построение угла заданной величины.
Основная цель — сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.
Важно выработать у учащихся содержательное понимание смысла термина процент. На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить,
сколько процентов одно число составляет от другого. Продолжается работа по распознаванию и изображению геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы.. Представления о наглядном изображении распределения отдельных составных частей какой-нибудь величины дают учащимся круговые диаграммы. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.
10. Повторение. Решение задач.
11. Резерв.
Математика (6 класс, 170 часов)
Повторение.
Делимость чисел .
Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители.
Основная цель — завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.
Завершается изучение вопросов, связанных с натуральными числами. Основное внимание уделяется знакомству с понятиями делитель и кратное, которые находят применение при сокращении обыкновенных дробей и при приведении их к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения — прямым подбором.
Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.
Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6-6 = 4-9 = 2- 18 и т.п. Не обязательно добиваться от всех учащихся умения разложить число на простые множители.
2. Сложение и вычитание дробей с разными знаменателями.
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.
Основная цель — выработать прочные навыки преобразования дробей, сложения и вычитания дробей.
Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. Умение приводить дроби к общему знаменателю используется для сравнения дробей.
При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа.
3.Умножение и деление обыкновенных дробей.
Умножение и деление обыкновенных дробей. Основные задачи на дроби.
Основная цель — выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.
Завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.
Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби.
4. Отношения и пропорции .
Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональностях величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.
Основная цель -— сформировать понятия пропорции, прямой и обратной пропорциональностей величин.
Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.
Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.
Даются представления о длине окружности и круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.
5. Положительные и отрицательные числа.
Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координата точки.
Основная цель — расширить представления учащихся о числе путем введения отрицательных чисел.
Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой. В дальнейшем она будет служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел.
Специальное внимание уделяется усвоению вводимого понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.
6. Сложение и вычитание положительных и отрицательных чисел.
Сложение и вычитание положительных и отрицательных чисел.
Основная цель — выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.
Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек координатной прямой.
Отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.
7. Умножение и деление положительных и отрицательных чисел .
Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.
Основная цель — выработать прочные навыки арифметических действий с положительными и отрицательными числами.
Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.
Учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить (если это возможно) числитель на знаменатель. В каждом конкретном случае они должны знать, в какую дробь обращается данная обыкновенная дробь — в десятичную или периодическую. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как 1/2, 1/4, 1/5, 1/20, 1/25, 1/50.
8. Решение уравнений.
Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.
Основная цель — подготовить учащихся к выполнению преобразований выражений, решению уравнений.
Преобразования буквенных выражений путем раскрытия скобок и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения не сложных уравнений.
Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приемами решения линейных уравнений с одной переменной.
9. Координаты на плоскости.
Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.
Основная цель — познакомить учащихся с прямоугольной системой координат на плоскости.
Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Главное внимание следует уделить отработке навыков их построения с помощью линейки и чертежного треугольника, не требуя воспроизведения точных определений.
Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.
Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение полученные ранее сведения о масштабе и округлении чисел.
10. Повторение. Решение задач.
Алгебра (7 класс, 102 часа)
Повторение курса математики 6 класса.
Выражения и их преобразования. Уравнения.
Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений.
Цель – систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученные учащимися в курсе математики 5,6 классов.
Знать какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».
Уметь осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.
3. Функции.
Функция, область определения функции, Способы задания функции. График функции. Функция y=kx+b и её график. Функция y=kx и её график.
Цель – познакомить учащихся с основными функциональными понятиями и с графиками функций y=kx+b, y=kx.
Знать определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.
Уметь правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы
4. Степень с натуральным показателем.
Степень с натуральным показателем и её свойства. Одночлен. Функции y=x2, y=x3, и их графики.
Цель – выработать умение выполнять действия над степенями с натуральными показателями.
Знать определение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций у=х2, у=х3.
Уметь находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у=х2, у=х3; выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.
5. Многочлены.
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.
Цель – выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.
Знать определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».
Уметь приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.
6. Формулы сокращённого умножения.
Формулы . Применение формул сокращённого умножения к разложению на множители.
Цель – выработать умение применять в несложных случаях формулы сокращённого умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.
Знать формулы сокращенного умножения: квадратов суммы и разности двух выражений; различные способы разложения многочленов на множители.
Уметь читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.
7. Системы линейных уравнений.
Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений..
Цель – познакомить учащихся со способами решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и прменять их при решении текстовых задач.
Знать, что такое линейное уравнение с двумя переменными, система уравнений, знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.
Уметь правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.
8. Повторение.
Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).
Алгебра (8 класс, 102 часа)
Глава 1. Рациональные дроби.
Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и её график.
Цель: выработать умение выполнять тождественные преобразования рациональных выражений.
Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.
Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.
При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.
Изучение темы завершается рассмотрением свойств графика функции у =.
Контрольная работа № 1 по теме: «Рациональные дроби. Сложение и вычитание дробей».
Контрольная работа № 2 по теме: «Рациональные дроби. Произведение и частное дробей».
Знать:
определение целых, дробных и рациональных выражений;
определение допустимых значений переменных;
определение рациональной дроби;
основное свойство дроби;
определение тождества;
правила сложения и вычитания дробей с одинаковыми знаменателями;
правила сложения и вычитания дробей с разными знаменателями;
правила умножения и деления дробей, возведения дроби в степень;
определение обратной пропорциональности.
Уметь:
находить значения рациональных выражений;
определять целые, дробные и рациональные выражения;
находить допустимые значения переменной;
находить область определения функции;
сокращать дроби;
складывать и вычитать дроби с одинаковыми знаменателями;
складывать и вычитать дроби с разными знаменателями;
умножать и делить дроби, возводить дроби в степень;
преобразовывать рациональные выражения;
строить график функции y=.
Глава 2. Квадратные корни.
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , её свойства и график.
Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.
В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.
При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.
Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество =
, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида
,
Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.
Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у=, её свойства и график. При изучении функции у=
, показывается ее взаимосвязь с функцией у = х2, где х ≥ 0.
Контрольная работа № 3 по теме: «Арифметический квадратный корень и его свойства».
Контрольная работа № 4 по теме: «Арифметический квадратный корень и его свойства».
Знать:
определение натуральных, целых и рациональных чисел;
определение иррациональных и действительных чисел;
определение квадратного и арифметического квадратного корня из числа;
свойства функции y = ;
правила вычисления квадратного корня из произведения и дроби;
правила вычисления квадратного корня из степени.
Уметь:
сравнивать рациональные числа;
представлять рациональные числа в виде бесконечной десятичной дроби;
сравнивать иррациональные и действительные числа;
вычислять квадратные корни;
решать уравнения вида: x2 = a;
находить приближенное значение квадратного корня;
строить график функции y = ;
вычислять квадратный корень из произведения и дроби;
вычислять квадратный корень из степени;
выносить множитель из-под знака корня;
вносить множитель под знак корня;
преобразовывать выражения, содержащие квадратные корни.
Глава 3. Квадратные уравнения.
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.
В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.
Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.
Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.
Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.
Контрольная работа № 5 по теме: «Квадратные уравнения» Контрольная работа № 6 по теме: «Дробные рациональные уравнения».
Знать:
определение квадратного уравнения;
определение неполного квадратного уравнения;
формулы полных и неполных квадратных уравнений;
определение приведенного квадратного уравнения;
определение дискриминанта квадратного уравнения;
формулу дискриминанта квадратного уравнения;
формулы корней квадратного уравнения;
правило решения квадратного уравнения;
теорему Виета и обратную ей теорему;
определение целых и дробных рациональных уравнений;
правило решения дробных рациональных уравнений.
Уметь:
решать неполные квадратные уравнения;
решать квадратные уравнения выделением квадрата двучлена() также задачи на известные учащимся зависимости между величинами ;
решать квадратные уравнения по формуле;
решать задачи с помощью квадратных уравнений;
применять теорему Виета и обратную теорему;
решать дробные рациональные уравнения;
решать задачи с помощью рациональных уравнений;
решать графически уравнения.
Глава 4. Неравенства.
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.
Цель: ознакомить обучающихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.
Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.
Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.
В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.
При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах b, ах b, остановившись специально на случае, когда а
В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.
Контрольная работа № 7 по теме: «Решение неравенств и систем неравенств».
Знать:
определение сравнения чисел;
свойства числовых неравенств;
теоремы о почленном сложении и умножении числовых неравенств;
все виды числовых промежутков;
определение пересечения и объединения множеств
определение решения неравенства;
свойства, используемые при решении неравенств;
определение линейного неравенства с одной переменной;
определение решения системы неравенств с одной переменной.
Уметь:
доказывать неравенства;
применять свойства числовых неравенств;
оценивать значения выражений;
складывать, вычитать, умножать и делить почленно числовые неравенства;
изображать на координатной прямой числовые промежутки;
записывать промежутки, изображенные на рисунке;
решать линейные неравенства с одной переменной;
решать системы неравенств с одной переменной.
Глава 5. Степень с целым показателем. Элементы статистики.
Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.
Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.
В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.
Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.
Контрольная работа № 8 по теме: «Степень с целым показателем».
Знать:
определение степени с целым отрицательным показателем;
свойства степени с целым показателем;
определение стандартного вида числа.
Уметь:
вычислять степени с целым отрицательным показателем;
применять свойства степени с целым показателем;
записывать числа в стандартном виде;
выполнять действия с числами, записанными в стандартном виде;
оценивать абсолютную и относительную погрешности приближенного значения;
выполнять действия над приближенными значениями;
выполнять действия над приближенными значениями на калькуляторе.
6. Повторение.
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.
Алгебра (9 класс, 102 часа)
1. Повторение курса 8 класса.
2. Квадратичная функция.
Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, ее свойства и график. Степенная функция.
О с н о в н а я ц е л ь — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.
В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.
Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.
Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + b ,
у = а (х - т)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приемы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.
При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.
Учащиеся знакомятся со свойствами степенной функции у = хn при четном и нечетном натуральном показателе п. Вводится понятие корня п-ой степени. Учащиеся должны понимать смысл записей вида √-27, √81. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.
3.Уравнения и неравенства с одной переменной.
Основная цель — систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с О или ах2 + bх + с О, где а ≠ 0.
В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических других видов уравнений.
Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приёмами решения таких уравнений.
Формирование умений решать неравенства вида ах2 + bх + c 0 или ах2 + bх + с а ≠ 0, осуществляется с опорой на введения о графике квадратичной функции (направление ветвей параболы, ее расположение относительно оси Ох).
Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.
4.Уравнения и неравенства с двумя переменными.
Основная цель: выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменное и текстовые задачи с помощью составления таких систем.
В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.
Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.
Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.
Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.
Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.
5. Прогрессии.
Арифметическая и геометрическая прогрессии. Формулы п-го члена и суммы первых п членов прогрессии. Бесконечно убывающая геометрическая прогрессия.
Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.
При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.
Работа с формулами n-го члена и суммы первых п членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.
Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.
6.Элементы комбинаторики и теории вероятностей.
Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.
Основная цель — ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.
Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний.
При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.
В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.
Повторение.
УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
Тематическое планирование учебного предмета «Математика» в 5-6 классах
№ | Разделы, темы | Количество часов
| |
5 класс | 6 класс | ||
1. | Повторение | 4ч | 4ч |
2. | Натуральные числа и шкалы | 12 ч. | |
3. | Сложение и вычитание натуральных чисел | 22 ч. | |
4. | Умножение и деление натуральных чисел | 24 ч. | |
5. | Площади и объёмы | 12 ч. | |
6. | Обыкновенные дроби | 23 ч. | |
7. | Десятичные дроби. Сложение и вычитание десятичных дробей | 15 ч. | |
8. | Умножение и деление десятичных дробей | 23 ч. | |
9. | Инструменты для вычислений и измерений | 17 ч. | |
10. | Повторение. Решение задач | 14 ч. | |
11. | Резерв | 4ч | |
12. | Делимость чисел | | 18 ч. |
13. | Сложение и вычитание дробей с разными знаменателями | | 22 ч. |
14. | Умножение и деление обыкновенных дробей | | 25 ч. |
15. | Отношение и пропорции | | 19 ч. |
16. | Положительные и отрицательные числа | | 11 ч. |
17. | Сложение и вычитание положительных и отрицательных чисел | | 13ч. |
18. | Умножение и деление положительных и отрицательных чисел | | 12 ч. |
19. | Решение уравнений | | 15 ч. |
20. | Координаты на плоскости | | 14 ч. |
21. | Итоговое повторение курса математики 5-6 классов | | 16 ч. |
| Итого | 170ч. | 170 ч. |
| Количество контрольных работ | 14 | 15 |
Тематическое планирование учебного предмета «Алгебра» 7,8,9 классах
№ | Раздел | Класс (ч.) | ||
7 кл | 8кл | 9кл | ||
1 | Повторение | 3 |
| 4 |
2 | Выражения. Тождества. Уравнения. | 13 |
|
|
3 | Функции. | 11 |
|
|
4 | Степень с натуральным показателем | 12 |
|
|
5 | Многочлены | 15 |
|
|
6 | Формулы сокращенного умножения | 19 |
|
|
7 | Системы линейных уравнений | 15 |
|
|
8 | Рациональные дроби |
| 23 |
|
9 | Квадратные корни |
| 19 |
|
10 | Квадратные уравнения |
| 21 |
|
11 | Неравенства |
| 20 |
|
12 | Степень с целым показателем. |
| 7 |
|
13 | Квадратичная функция |
|
| 22 |
14 | Уравнения и неравенства с одной переменной |
|
| 14 |
15 | Уравнения и неравенства с двумя переменными |
|
| 17 |
16 | Арифметическая и геометрическая прогрессии |
|
| 15 |
17 | Элементы комбинаторики и теории вероятностей | 4 | 4 | 13 |
18 | Повторение | 10 | 8 | 17 |
| Итого | 102 | 102 | 102 |
Календарно-тематическое планирование курса по алгебре
8 класс (102 часа)
№ уроков по п/п | Наименование разделов и тем | Количество часов | Дата проведения | Примеча- ние | |
план | факт | ||||
Глава I. Рациональные дроби – 23 часа | |||||
1
| Рациональные выражения | 1 |
|
|
|
2 | Рациональные дроби | 1 |
|
|
|
3 | Основное свойство дроби. | 1 |
|
|
|
4-5 | Сокращение дробей. | 2 |
|
|
|
6 | Сложение дробей с одинаковыми знаменателями. | 1 |
|
|
|
7 | Вычитание дробей с одинаковыми знаменателями. | 1 |
|
|
|
8 | Сложение дробей с разными знаменателями. | 1 |
|
|
|
9 | Вычитание дробей с разными знаменателями. | 1 |
|
|
|
10-11 | Сложение и вычитание дробей. | 2 |
|
|
|
12 | Контрольная работа № 1. | 1 |
|
|
|
13 | Умножение дробей. | 1 |
|
|
|
14 | Возведение дроби в степень. | 1 |
|
|
|
15 | Умножение дробей. | 1 |
|
|
|
16-17 | Деление дробей. | 2 |
|
|
|
18-20 | Преобразование рациональных выражений. | 3 |
|
|
|
21-22 | Функция | 2 |
|
|
|
23 | Контрольная работа № 2. | 1 |
|
|
|
Глава II. Квадратные корни – 19 часов | |||||
24 | Рациональные числа. | 1 |
|
|
|
25 | Иррациональные числа. | 1 |
|
|
|
26 | Квадратные корни. | 1 |
|
|
|
27 | Арифметический квадратный корень. | 1 |
|
|
|
28-29 | Уравнение | 2 |
|
|
|
30-31 | Функция | 2 |
|
|
|
32-33 | Квадратный корень из произведения и дроби. | 2 |
|
|
|
34 | Квадратный корень из степени. | 1 |
|
|
|
35 | Контрольная работа №3. | 1 |
|
|
|
36 | Вынесение множителя из-под знака корня. | 1 |
|
|
|
37 | Внесение множителя под знак корня. | 1 |
|
|
|
38-41 | Преобразование выражений, содержащих квадратные корни. | 4 |
|
|
|
42 | Контрольная работа №4. | 1 |
|
|
|
Глава III. Квадратные уравнения – 21 час | |||||
43 | Определение квадратного уравнения. | 1 |
|
|
|
44 | Неполные квадратные уравнения. | 1 |
|
|
|
45 | Решение квадратных уравнений выделением квадрата двучлена. | 1 |
|
|
|
46-47 | Решение квадратных уравнений по формуле D. | 2 |
|
|
|
48-49 | Решение задач с помощью квадратных уравнений. | 2 |
|
|
|
50-51 | Теорема Виета. | 2 |
|
|
|
52 | Решение квадратных уравнений. | 1 |
|
|
|
53 | Контрольная работа №5. | 1 |
|
|
|
54-57 | Решение дробных рациональных уравнений. | 4 |
|
|
|
58-60 | Решение задач с помощью рациональных уравнений. | 3 |
|
|
|
61 | Графический способ решения уравнений. | 1 |
|
|
|
62 | Решение дробных рациональных уравнений. | 1 |
|
|
|
63 | Контрольная работа №6. | 1 |
|
|
|
Глава IV. Неравенства – 20 часов | |||||
64-65 | Числовые неравенства. | 2 |
|
|
|
66-67 | Свойства числовых неравенств. | 2 |
|
|
|
68 | Сложение числовых неравенств. | 1 |
|
|
|
69 | Умножение числовых неравенств. | 1 |
|
|
|
70 | Погрешность и точность приближений | 1 |
|
|
|
71-72 | Числовые промежутки. | 2 |
|
|
|
73 | Контрольная работа №7. | 1 |
|
|
|
74-77 | Решение неравенств с одной переменной. | 4 |
|
|
|
78-82 | Решение систем неравенств с одной переменной. | 5 |
|
|
|
83 | Контрольная работа №8. | 1 |
|
|
|
Глава V. Степень с целым показателем. Элементы статистики. – 11 часов | |||||
84 | Определение степени с целым отрицательным показателем. | 1 |
|
|
|
85 | Степень с целым отрицательным показателем.1 | 1 |
|
|
|
86-87 | Свойства степени с целым показателем. | 2 |
|
|
|
88 | Стандартный вид числа. | 1 |
|
|
|
89 | Выполнение действий над числами в стандартном виде. | 1 |
|
|
|
90-91 | Сбор и группировка статистических данных | 2 |
|
|
|
92-93 | Наглядное представление статистической информации | 2 |
|
|
|
94 | Контрольная работа №9. | 1 |
|
|
|
Повторение 8 часов | |||||
95 | Повторение темы «Преобразование рациональных выражений». | 1 |
|
|
|
96 | Повторение темы «Преобразование выражений, содержащих квадратные корни». | 1 |
|
|
|
97-98 | Повторение темы «Решение квадратных уравнений». | 2 |
|
|
|
99 | Итоговый зачет | 1 |
|
|
|
100-101 | Итоговая контрольная работа. | 2 |
|
|
|
102 | Итоговое повторение. Решение задач. | 1 |
|
|
|
РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА
Раздел «Арифметика»
Рациональные числа
Выпускник научится:
сравнивать и упорядочивать рациональные числа;
выполнять вычисления с рациональными числами, сочетая устные и письменные приемы вычислений, применение калькулятора;
использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты
применять понятия, связанные с делимостью натуральных чисел
Выпускник получит возможность:
познакомиться с позиционными системами счисления с основаниями, отличными от 10;
углубить и развить представления о натуральных числах и свойствах делимости;
научиться использовать приемы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа
Выпускник научится:
использовать начальные представления о множестве действительных чисел;
владеть понятием квадратного корня, применять его в вычислениях;
Выпускник получит возможность:
развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения , оценки
Выпускник научится:
использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин.
Выпускник получит возможность:
понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
понять, что погрешность результата вычисления должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения
Выпускник научится:
- оперировать понятиями "тождество", "тождественное преобразование", решать задачи, содержащие буквенные данные, работать с формулами;
- оперировать понятиями "квадратный корень", применять его в вычислениях;
- выполнять преобразование выражений, содержащих степени с целыми показателями и квадратные корни;
- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
- выполнять разложение многочленов на множители;
- применять преобразования выражений для решения различных задач из математики, смежных предметов, из реальной практики.
Выпускник получит возможность научиться:
- выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования для решения задач из различных разделов курса.
Уравнения
Выпускник научиться:
- решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- применять аналитический и графический языки для интерпретации понятий, связанных с понятием уравнения, для решения уравнений и систем уравнений;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- проводить простейшие исследования уравнений и систем уравнений, в том числе с применением графических представлений ( устанавливать, имеет ли уравнение или система уравнений решения, если имеет, то сколько и пр.)
Выпускник получит возможность:
использовать широкий спектр специальных приемов решения уравнений и систем уравнений; уверенно применять аппарат уравнений и неравенств для решения разнообразных задач из математики, смежных предметов, реальной практики
Неравенства
Выпускник научиться:
- понимать терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
- решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
Выпускник получит возможность:
- освоить разнообразные приёмы доказательства неравенств;
- применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
- применять аппарат неравенства для решения разнообразных математических задач, задач из смежных предметов и практики.
Раздел «Функции»
Числовые множества
Выпускник научится:
- понимать терминологию и символику, связанные с понятием множества, выполнять операции на множествами;
- использовать начальные представления о множестве действительных чисел.
Выпускник получит возможность:
- развивать представление о множествах;
- развивать представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
- развивать и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Числовые функции
Выпускник научится:
- понимать и использовать функциональные понятия, язык (термины, символические обозначения);
- строить графики элементарных функций, исследовать свойства числовых функций на основе изучения поведения их графиков;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
Выпускник получит возможность:
- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций стоить более сложные графики (кусочно-заданные, с "выколотыми" точками и т. п.);
- использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
Раздел «Числовые последовательности»
Арифметические и геометрические прогрессии
Выпускник научится:
понимать и использовать язык последовательностей (термины, символические обозначения);
- применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
Выпускник получит возможность научиться:
- решать комбинированные задачи с применением формул n-го члена и суммы n первых членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
- понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.
Раздел «Вероятность и статистика»
Описательная статистика
Выпускник научится:
- использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность:
- приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;
- научиться приводить содержательные примеры использования для описания данных.
Случайные события и вероятность
Выпускник научится:
-находить относительную частоту и вероятность случайного события.
Выпускник получит возможность:
-приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Комбинаторика
Выпускник научится:
-решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность:
-научиться некоторым специальным приёмам решения комбинаторных задач.
Элементы прикладной математики
Выпускник научится:
- использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
- понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения
- понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных