АЛЬБОМ
по дисциплине «Инженерная графика»
тема: «Сечение цилиндра»
Сечение цилиндра плоскостью
Построение сечения прямого кругового цилиндра аналогично построению сечения призмы, так как прямой круговой цилиндр можно рассматривать как прямую призму с бесчисленным количеством ребер— образующих цилиндра.
Выполнение чертежа начинают с построения трех проекций прямого кругового цилиндра. На поверхности цилиндра проводят несколько равномерно расположенных образующих, в данном примере двенадцать. Для этого горизонтальную проекцию основания делят на 12 равных частей. С помощью линий связи проводят фронтальные проекции образующих цилиндра. Из комплексного чертежа видно, что плоскость а" пересекает не только боковую поверхность, но и верхнее основание цилиндра. Как известно, плоскость, расположенная под углом к оси цилиндра, пересекает его по эллипсу. Следовательно, фигура сечения в данном случае представляет собой часть эллипса.
Фронтальная проекция фигуры сечения совпадает с фронтальным следом fo' u плоскости а". Горизонтальная проекция этой фигуры совпадает с горизонтальной проекцией основания цилиндра.
Профильная проекция фигуры сечения представляет собой проекцию части эллипса и может быть построена по нескольким точкам, которые строятся с помощью линий связи по горизонтальной и фронтальной проекциям фигуры сечения. Полученные таким образом профильные проекции точек фигуры сечения соединяют кривой по лекалу.
Для построения развертки на горизонтальной прямой откладывают длину окружности основания, равную nd, и делят ее на 12 равных частей. Из точек деления восставляют перпендикуляры к отрезку nd, на них откладывают действительные длины образующих цилиндра от основания до секущей плоскости а", которые взяты с фронтальной или профильной проекции цилиндра. Полученные точки 1о---9о, соединяют по лекалу плавной кривой. Затем фигуру сечения соединяют с частью верхнего основания цилиндра, ограниченного хордой 1 0 9 0 (сегмент), а фигуру нижнего основания цилиндра (окружность) соединяют с нижней частью развертки.
Изометрическую проекцию усеченного цилиндра строят следующим образом. Сначала строят изометрию нижнего основания (эллипс) и части верхнего основания — сегмента (часть эллипса). На диаметре окружности нижнего основания от центра откладывают отрезки а, b и т.д., взятые с горизонтальной проекции основания. Затем из намеченных точек проводят прямые, параллельные оси цилиндра до пересечения с осью эллипса.
Через полученные точки проводят прямые, параллельные оси у, и на них откладывают отрезки, взятые с действительного вида сечения. Полученные точки соединяют по лекалу. Заканчивают построение проведением очерковых образующих, касательных к основаниям эллипса.