СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Теорема Пифагора

Категория: Геометрия

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Теорема Пифагора»

Теорема Пифагора Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век.

Теорема Пифагора

Пребудет вечной истина, как скоро

Её познает слабый человек!

И ныне теорема Пифагора

Верна, как и в его далёкий век.

Содержание  Пифагор Формулировка теоремы  Доказательства теоремы  Значение теоремы Пифагора

Содержание

  • Пифагор
  • Формулировка теоремы
  • Доказательства теоремы
  • Значение теоремы Пифагора
 Пифагор

Пифагор

Формулировка  теоремы Во времена Пифагора теорема звучала так:  « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»  « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».   или

Формулировка теоремы

Во времена Пифагора теорема звучала так:

  • « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»

  • « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах». 

или

Современная формулировка « В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».    

Современная формулировка

« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».    

Доказательства теоремы  Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).

Доказательства теоремы

Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).

Самое простое доказательство Рассмотрим квадрат, показанный на рисунке.  Сторона квадрата равна a + c . c a
  • Самое простое доказательство

Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c .

c

a

c a a c c a  В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c .    В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c .    Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c .

c

a

a

c

c

a

В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c .

В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c .

Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c .

Доказательство Евклида  Дано:  ABC -прямоугольный треугольник  Доказать: S ABDE =S ACFG +S BCHI
  • Доказательство Евклида

Дано:

ABC -прямоугольный треугольник

Доказать:

S ABDE =S ACFG +S BCHI

Доказательство:  Пусть ABDE -квадрат, построенный на гипотенузе прямоугольного треугольника ABC , а ACFG и BCHI -квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q ; соединим точки C и E , B и G .

Доказательство:

Пусть ABDE -квадрат, построенный на гипотенузе прямоугольного треугольника ABC , а ACFG и BCHI -квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q ; соединим точки C и E , B и G .

Очевидно, что углы CAE=GAB(=A+90°) ; отсюда следует, что треугольники ACE и AGB (закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA ; они имеют общее основание AE и высоту AP , опущенную на это основание, следовательно S PQEA = 2S ACE Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, S FCAG =2S GAB Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Очевидно, что углы CAE=GAB(=A+90°) ; отсюда следует, что треугольники ACE и AGB (закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA ; они имеют общее основание AE и высоту AP , опущенную на это основание, следовательно

S PQEA = 2S ACE

Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, S FCAG =2S GAB

Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Алгебраическое доказательство Дано:  ABC -прямоугольный треугольник Доказать:  AB 2 =AC 2 +BC 2                                             Доказательство:  1) Проведем высоту CD из вершины прямого угла С .  2) По определению косинуса угла соsА=AD/AC=AC/AB , отсюда следует AB*AD=AC 2 . 3) Аналогично соsВ=BD/BC=BC/AB , значит AB*BD=BC 2 . 4) Сложив полученные равенства почленно, получим: AC 2 +BC 2 = АВ *(AD + DB)  AB 2 =AC 2 +BC 2 . Что и требовалось доказать.
  • Алгебраическое доказательство

Дано: ABC -прямоугольный треугольник

Доказать: AB 2 =AC 2 +BC 2

                                         

  Доказательство:

1) Проведем высоту CD из вершины прямого угла С . 2) По определению косинуса угла соsА=AD/AC=AC/AB , отсюда следует

AB*AD=AC 2 .

3) Аналогично соsВ=BD/BC=BC/AB , значит

AB*BD=BC 2 .

4) Сложив полученные равенства почленно, получим:

AC 2 +BC 2 = АВ *(AD + DB)

AB 2 =AC 2 +BC 2 . Что и требовалось доказать.

Геометрическое доказательство  Дано:  ABC -прямоугольный треугольник Доказать:  BC 2 =AB 2 +AC 2 Доказательство:  1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC . Затем опустим перпендикуляр ED к отрезку AD , равный отрезку AC , соединим точки B и E .  2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников: S ABED =2*AB*AC/2+BC 2 /2 3) Фигура ABED является трапецией, значит, её площадь равна: S ABED =  (DE+AB)*AD/2. 4) Если приравнять левые части найденных выражений, то получим: AB*AC+BC 2 /2=(DE+AB)(CD+AC)/2 AB*AC+BC 2 /2= (AC+AB) 2 /2 AB*AC+BC 2 /2= AC 2 /2+AB 2 /2+AB*AC BC 2 =AB 2 +AC 2 .     Это доказательство было опубликовано в 1882 году Гэрфилдом.
  • Геометрическое доказательство

Дано: ABC -прямоугольный треугольник

Доказать: BC 2 =AB 2 +AC 2

Доказательство:

1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC . Затем опустим перпендикуляр ED к отрезку AD , равный отрезку AC , соединим точки B и E . 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:

S ABED =2*AB*AC/2+BC 2 /2

3) Фигура ABED является трапецией, значит, её площадь равна:

S ABED = (DE+AB)*AD/2.

4) Если приравнять левые части найденных выражений, то получим:

AB*AC+BC 2 /2=(DE+AB)(CD+AC)/2

AB*AC+BC 2 /2= (AC+AB) 2 /2

AB*AC+BC 2 /2= AC 2 /2+AB 2 /2+AB*AC

BC 2 =AB 2 +AC 2 .

    Это доказательство было опубликовано в 1882 году Гэрфилдом.

 Значение теоремы Пифагора Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии .

Значение теоремы Пифагора

Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии .

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons  asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи,  вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!