СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Три формы комплексного числа

Категория: Математика

Нажмите, чтобы узнать подробности

Теоретический материал,примеры с решениями, задания для самостоятельного решения

Просмотр содержимого документа
«Три формы комплексного числа»

КОМПЛЕКСНЫЕ ЧИСЛА

Основные определения. Операции над комплексными числами

1. Существует элемент i (мнимая единица) такой, что i2 = – 1.

2. Символ a + bi называют комплексным числом с действительной частью a и мнимой частью bi, где a и b – действительные числа, b – коэффициент мнимой части. Комплексное число a + 0i отождествляется с действительным числом a, т.е. a + 0i = a, в частности, 0 + 0i = 0. Числа вида bi (b № 0) называют чисто мнимыми.

Например, комплексное число 2 + 3i имеет действительную часть – действительное число 2 и мнимую часть 3i, действительное число 3 – коэффициент мнимой части. Комплексное число 2 – 3i имеет действительную часть число 2, мнимую часть – 3i, число – 3 – коэффициент при мнимой части.

3. Правило равенства. Два комплексных числа равны тогда и только тогда, когда равны их действительные части и равны коэффициенты мнимых частей.

Т.е., если a + bi = c +di, то a = c, b = d: и, обратно, если a = c, b = d, то a + bi = c +di.

4. Правило сложения и вычитания комплексных чисел.

(a + bi) + (c + di) = (a + c) + (b + d)i.

Например: (2 + 3i) + (5 + i) = (2 + 5) + (3 + 1)i = 7 + 4i;

(– 2 + 3i) + (1 – 8i) = (– 2 + 1) + (3 + (– 8))i = – 1 – 5i;

(– 2 + 3i) + (1 – 3i) = (– 2 + 1) + (3 + (– 3))i =

= – 1 + 0i = – 1.

Вычитание комплексных чисел определяется как операция, обратная сложению, и выполняется по формуле:

(a + bi) – (c + di) = (a – c) + (b – d)i.

Например: (5 – 8i) – (2 + 3i) = (3 – 2) + (– 8 – 3)i = 1 – 11i;

(3 – 2i) – (1 – 2i) = (3 – 1) + ((– 2) – (– 2))i = 2 + 0i = 2.

5. Правило умножения комплексных чисел.

(a + bi)(c + di) = (aс + bd) + (ad + bc)i.

Из определений 4 и 5 следует, что операции сложения, вычитания и умножения над комплексными числами осуществляются так, как будто мы выполняем операции над многочленами, однако с условием, что i2 = – 1.

Действительно: (a + bi)(c + di) = ac + adi + bdi2 = (ac – bd) + (ad + bc)i.

Например, (– 1 + 3i)(2 + 5i) = – 2 – 5i + 6i + 15i2 = – 2 – 5i + 6i – 15 = – 17 + i; (2 + 3i)(2 – 3i) = 4 – 6i + 6i – 9i2 = 4 + 9 = 13.

6. Деление комплексного числа a + bi на комплексное число c + di определяется как операция обратная умножению и выполняется по формуле:

.

Формула теряет смысл, если c + di = 0, так как тогда c2 + d2 = 0, т. е. деление на нуль и во множестве комплексных чисел исключается.

Обычно деление комплексных чисел выполняют путем умножения делимого и делителя на число, сопряженное делителю.

Например,

Решение квадратных уравнений

Одна из причин введения комплексных чисел состояла в том, чтобы добиться разрешимости любого квадратного уравнения, в частности уравнения

x2 = – 1.

Так, уравнение x2 = – 1 имеет два решения: x1 = i, x2 = – i.

Проверка: i•i = i2 = – 1, (– i)•(– i) = i2 = – 1.

Перейдем теперь к вопросу о решении полного квадратного уравнения. Квадратным уравнением называют уравнение вида: ax2 + bx + c = 0, где x – неизвестная, a, b, c – действительные числа, соответственно первый, второй коэффициенты и свободный член.

К обеим частям уравнения прибавим выражение с тем, чтобы левая его часть представляла полный квадрат суммы двух слагаемых:

Итак, введение комплексных чисел позволяет разработать полную теорию квадратных уравнений. В комплексных числах разрешимо любое квадратное уравнение.

Пример.

1. Решите уравнение x2 – 4x + 5 = 0.

Решение. D = 16 – 4•1•5 = – 4

Геометрическая интерпретация комплексных чисел

Геометрическая интерпретация комплексных чисел состоит в том, что каждому комплексному числу z = x + yi ставится в соответствие точка (x, y) координатной плоскости таким образом, что действительная часть комплексного числа представляет собой абсциссу, а коэффициент при мнимой части – ординату точки.

На рисунке 1 изображена координатная плоскость.

Числу 2 + 3i соответствует точка A(2, 3) плоскости; числу 2 – 3i – точка B(2, – 3); числу – 2 + 3i – точка C(– 2, 3); числу – 2 – 3i – точка D(– 2; – 3). Числу 3i соответствует точка E(0, 3); а числу – 3i – точка F(0, – 3).

Действительным числам x + 0i соответствуют точки оси абсцисс, а чисто мнимым числам 0 + yi, где y– точки оси ординат. Поэтому ось Oy называют мнимой, а ось Ox – действительной.

Сопряженным комплексным числам соответствуют точки, симметричные относительно оси абсцисс (рис. 2).

Тригонометрическая форма комплексного числа

Точка координатной плоскости, соответствующая комплексному числу z = x + yi, может быть указана по-другому: ее координатами могут быть расстояние r от начала координат и величина угла между положительной полуосью Ox и лучом Oz (рис. 3).

Расстояние r от начала системы координат до точки, соответствующей комплексному числу z, называют модулем этого числа. Тогда по теореме Пифагора (рис. 2) имеем: r2 = x2 + y2 = (x + yi)(x – yi) = z•z.

Отсюда найдем модуль комплексного числа как арифметическое (неотрицательное) значение корня:

Если комплексное число z изображается точкой оси абсцисс (т.е. является действительным числом), то его модуль совпадает с абсолютным значением. Все комплексные числа, имеющие модуль 1, изображаются точками единичной окружности – окружности с центром в начале системы координат, радиуса 1 (рис. 4).

Угол между положительной полуосью Ox и лучом Oz называют аргументом комплексного числа z = x + yi (рис. 3).

Сопряженные комплексные числа имеют один и тот же модуль и аргументы, отличающиеся знаком: = – .

В отличие от модуля аргумент комплексного числа определяется неоднозначно. Аргумент одного и того же комплексного числа может иметь бесконечно много значений, отличающихся друг от друга на число, кратное 360°. Например, число z (рис. 3) имеет модуль r, аргумент же этого числа может принимать значения ; + 360°; + 720°; + 1080°; … или значения – 360°; –720°; – 1080°; … Данное значение модуля r и любое из приведенных выше значений аргумента определяют одну и ту же точку плоскости, соответствующую числу z.

Пусть точке с координатами (x; y) соответствует комплексное число z = x + yi. Запишем это комплексное число через его модуль и аргумент. Воспользуемся определением тригонометрических функций синуса и косинуса (рис. 3):

x = r cos ; y = r sin.

Тогда число z выражается через модуль и аргумент следующим образом: z = x + yi = r(cos + i sin ).

Выражение z = r(cos + i sin ) называют тригонометрической формой комплексного числа, в отличие от выражения z = x + yi, называемого алгебраической формой комплексного числа.

Приведем примеры обращения комплексных чисел из алгебраической формы в тригонометрическую:

Для числа i имеем r = 1, = 90°, поэтому i = 1(cos 90° + i sin 90°);

Для числа – 1 имеем r = 1, = 180°, поэтому – 1 = 1(cos 180° + i sin 180°);

Для числа 1 + i имеем поэтому

Для числа имеем r = 1, = 45°, поэтому

Для числа имеем r = 2, j = 120°, поэтому

Справедливость приведенных равенств нетрудно проверить путем подстановки в их правой части числовых значений тригонометрических функций. Итак, для того, чтобы комплексное число, заданное в алгебраической форме, обратить в тригонометрическую форму, необходимо найти его модуль r и аргумент , пользуясь формулами:

Действия над комплексными числами, заданными в тригонометрической форме.


Произведение комплексных чисел и находится по формуле:



Показательная форма комплексного числа



Примеры: Представить в показательной форме числа:

  1. z=2i; 2) z= - 1+i.

Решение: 1) Здесь . Получим

2) Здесь . Получим


Задания для самостоятельного решения:

  1. Выполните действие: .

  2. Представить в тригонометрической форме следующие числа: 1) 2+2i; 2) .

  3. Представить в показательной форме числа: 1) 1; 2) .


10




Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!