СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до 07.06.2025
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
Тренировочный вариант ЕГЭ по математике №9, профильный
Вариант № 1
1. Шоколадка стоит 40 рублей. В воскресенье в супермаркете действует специальное предложение: заплатив за три шоколадки, покупатель получает четыре (одну в подарок). Какое наибольшее количество шоколадок можно получить, потратив не более 200 рублей в воскресенье?
2. На рисунке жирными точками показана цена золота, установленная Центробанком РФ, во все рабочие дни в октябре 2009 года. По горизонтали указываются числа месяца, по вертикали — цена золота в рублях за грамм. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наибольшую цену золота на момент закрытия торгов в период с 3 по 13 октября (в рублях за грамм).
3. На клетчатой бумаге с размером клетки 1
1 изображён угол. Найдите тангенс этого угла.
4. В сборнике билетов по философии всего 25 билетов, в 8 из них встречается вопрос по теме "Пифагор". Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по теме "Пифагор".
5. Решите уравнение .
6. В треугольнике ABC AC = BC, AB = 6,
Найдите высоту AH.
7. На рисунке изображен график функции и отмечены точки −2, −1, 3, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
8. Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на
.
9. Найдите если
и
10. Расстояние от наблюдателя, находящегося на небольшой высоте километров над землёй, до наблюдаемой им линии горизонта вычисляется по формуле
где
— радиус Земли. С какой высоты горизонт виден на расстоянии 160 километров? Ответ выразите в километрах.
11. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 1% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?
12. Найдите наименьшее значение функции на отрезке
13. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие промежутку
14. Плоскость α пересекает два шара, имеющих общий центр. Площадь сечения меньшего шара этой плоскостью равна 6. Плоскость β, параллельная плоскости α, касается меньшего шара, а площадь сечения этой плоскостью большего шара равна 4. Найдите площадь сечения большего шара плоскостью α.
15. Решите неравенство:
16. Боковые стороны AB и CD трапеции ABCD равны 6 и 8 соответственно. Отрезок, соединяющий середины диагоналей, равен 5, средняя линия трапеции равна 25. Прямые AB и CD пересекаются в точке М. Найдите радиус окружности, вписанной в треугольник ВМС.
17. В июле 2016 года планируется взять кредит в банке на три года в размере S млн рублей, где S — целое число. Условия его возврата таковы:
− каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
− с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
− в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей
Месяц и год | Июль 2016 | Июль 2017 | Июль 2018 | Июль 2019 |
Долг (в млн рублей) | S | 0,7S | 0,4S | 0 |
Найдите наименьшее S, при котором каждая из выплат будет больше 5 млн рублей.
18. Найдите все значения a, при каждом из которых функция имеет более двух точек экстремума.
19. Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма — это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма оценивают следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое оставшихся оценок.
а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания равняться
б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания равняться
в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.
Электронная тетрадь по геометрии 9...
Математика 6 класс ФГОС
Электронная тетрадь по алгебре 8 класс...
Математика 6 класс
Алгебра 10 класс
Электронная тетрадь по алгебре 11 класс...
Алгебра 10 класс ФГОС
Геометрия 10 класс ФГОС
© 2017, Астахова Вера Григорьевна 1285 14
Рекомендуем курсы ПК и ППК для учителей
Похожие файлы