Математика, 5 класс на примере учебника «Математика. 5 класс», Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд А.Г.
Тема: Сложение натуральных чисел; свойство нуля при сложении.
Цели: формирование центральных математических понятий (число, величина);
подведение обучающихся к осознанию взаимосвязи математики и окружающего мира;
развитие интеллектуальных и творческих способностей обучающихся, критичности мышления, интереса к изучению математики;
формирование умения распознавать проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач.
Задачи: Исследовать свойства натурального ряда, чисел 0 и 1 при сложении.
Выполнять арифметические действия с натуральными числами, вычислять значения числовых выражений со скобками и без скобок. Выполнять прикидку и оценку значений числовых выражений, предлагать и применять приёмы проверки вычислений. Использовать при вычислениях переместительное и сочетательное свойства сложения, формулировать
и применять правила преобразования числовых выражений на основе свойств арифметических действий.
Планируемые результаты обучения:
а) ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
овладение языком математики и математической культурой как средством познания мира; овладение простейшими навыками исследовательской деятельности; готовность приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других;
б) МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
1) Универсальные познавательные действия
выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии; использовать вопросы как исследовательский инструмент по-
знания; выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
2) Универсальные коммуникативные действия
воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат; участвовать в групповых формах работы; владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
в) ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Понимать и правильно употреблять термины, связанные с натуральными числами; выполнять арифметические действия с натуральными числами, выполнять проверку, прикидку результата вычислений; решать задачи, содержащие зависимости, связывающие величины: скорость, время, расстояние; использовать краткие записи, таблицы, обозначения при решении задач; пользоваться основными единицами измерения: расстояния, времени, скорости.
Краткое учебное содержание.
Систематизация и развитие знаний о натуральных числах, полученных в начальной школе. Сложение натуральных чисел; свойство нуля при сложении. Использование при вычислениях переместительного и сочетательного свойств (законов) сложения. Решение текстовых задач арифметическим способом. Использование при решении задач таблиц и
схем.
Виды организации учебной деятельности.
индивидуальная работа;
фронтальная работа;
групповая форма работы.
Учебные задания для разных этапов учебного занятия.
Этапы урока:
1.Актуализация опорных знаний:
Сколько примеров и задач вы решили за 4 года обучения в школе?
Сколько раз вы писали «+» и «-», «*» и «/»?
А задумывались ли вы хоть раз о том, откуда эти знаки пришли и что означали?
(Найдите информацию по запросу: «История математических знаков»
Первое появление арифметических знаков + и – вместе в печатной книге зафиксировано в немецком трактате «Быстрый и приятный счет для всех торговцев», посвященном прикладной арифметике, который был написан Иоганном Видманом и опубликован в 1489 году, а знак минуса впервые появился чуть раньше – в рукописи по алгебре, написанной в 1481 и опубликованной в 1486 году. Современные символы сложения, вычитания, умножения, деления и равенства стандартны во всех странах мира. Они более универсальны, чем буквы любого письменного языка. Хотя их изображения просты и не поражают красотой, они надежно запечатлелись в нашем представлении о природе вещей.
Актуализация знаний;(фронтальный опрос)
Какое число надо прибавить к натуральному числу, чтобы получилось следующее за ним число? Ответ: Единицу.
Выполним устно номер №182.
999+1=1000
78099+1=78100
999999+1=1000000
А если нужно к 3+2, то (продолжить предложение) /к 3 прибавить 1 два раза/ получаем 3+1+1=5
Короче: 3+2=5
№183
76+24=100. Сколько единиц надо прибавить к числу 76, чтобы получить 100.
Ответ: 24
1.Как называют числа, которые складывают?
2. Как называют результат сложения?
3. Какое свойство сложения изображено на координатных лучах?
4. Какие законы (свойства) сложения вы изучили?
5. Если, а, в и с- натуральные числа, запишите переместительное, сочетательное свойство сложения.
6. Изменится ли число, если к нему прибавить 0?
7. Запишите свойство сложения с 0.
Устно: (Групповая работа на концентрацию внимания и быстроту мышления). Каждый выполняет 1 действие и результат передает следующему обучающемуся. Выигрывает та группа, которая быстрее и правильно выполнит действия.
Откройте свои тетради, запишите в них число, классная работа и тему сегодняшнего урока.
Индивидуальная работа.
№191
Вычислить, выбирая удобный порядок действий.
а) (457+705) + 295 б) 554 + (46 + 1425)
Каким свойством мы здесь пользовались?
Работа в парах. (Обсуждение, составление плана, взаимоконтроль)
Физкультминутка
(Сменить деятельность, обеспечить эмоциональную разгрузку учащихся)
Мы работали отлично,
Отдохнуть не прочь сейчас,
И зарядка к нам привычно
На урок приходит в класс.
Выше руки, выше пятки,
Улыбнитесь веселей!
Мы попрыгаем, как зайки,
Сразу станем всех бодрей!
Потянулись и вдохнули.
Отдохнули? Отдохнули!
Самостоятельная работа «Экспресс-тест» «Сложение натуральных чисел».
(Контроль и коррекция знаний)
Вариант 1
Сумма 503 и 19 равняется:
А. 1083; Б. 522; В.921; Г.983
2) Вычислите удобным способом значение выражения; 38+263+37+262
3) В книге содержится два рассказа о животных. Первый, о гренландских китах, занимает на 11 страниц меньше, чем второй, об австралийских страусах. Если первый рассказ занимает 36страниц, то оба занимают:
А. 60стр. Б. 84стр. В.83стр. Г.63стр.
Вариант 2
Сумма 304 и 18 равняется:
А. 997; Б. 816; В. 322; Г.897.
2) Вычислите удобным способом значение выражения; 207+132+93+268
3) На стоянке находились под охраной автомобили «Форд» и «Лада». Автомобилей «Форд» было на 12 больше, чем «Лада». Сколько всего на стоянке автомобилей «Форд» и «Лада», если стояло 29 автомобилей «Форд»
А. 46машин; Б.71 машина; В.45машин; Г.70машин.
По завершению работы – самопроверка по образцу.
6. Итог урока: Самооценка результатов своей деятельности и всего класса
Домашнее задание: п.6 (правила), № 229, №231(а, б), № 232
Диагностические материалы для оценивания результатов обучения.
Тест по теме «Сложение натуральных чисел», 5 класс
1.Выберете верную запись переместительного свойства сложения для чисел 11 и 24.
А) 11+24=24-11
Б) 11+24=24*11
В) 11+24=24+11
Г) 11*24=24*11
2. Выберите неверное равенство
А) 16+0=16
Б) 0+32=0
В) 0+42=42
Г) 67-0=67
3. Нейдите значение суммы чисел 324 и 765
А) 1890
Б) 1089
В) 1998
Г) 989
4. Вычислите: 2314781+988428
А) 887760
Б) 3403199
В) 3303209
Г) 8887061
5. В первом ящике было 64 кг яблок, что на 24 кг больше, чем во втором ящике. Сколько килограммов яблок было в обоих ящиках вместе?
А) 152
Б) 88
В) 112
Г) 104
Вариант 2
1.Выберете верную запись сочетательного свойства сложения для чисел 54, 3 и 21.
А)54-(21+3) =54-21-3
Б) 21+(54-3) =(21+54) -3
В) 21+(3+54) =(21+3) +54
Г) 21*(54-3) =21*54-21*3
2. Выберите неверное равенство
А) 76+0=76
Б) 0+54=54
В) 0+22=0
Г) 167-0=167
3. Нейдите значение суммы чисел 926 и 765
А) 1681
Б) 1781
В) 16811
Г) 1691
4. Вычислите: 2414780+988428
А) 3403208
Б) 1426352
В) 3303209
Г) 2387068
5. В первом ящике было 64 кг яблок, что на 24 кг меньше, чем во втором ящике. Сколько килограммов яблок было в обоих ящиках вместе?
А) 152
Б) 88
В) 112
Г) 104
Ключ к тесту:
1 вариант: 1) -В, 2) -Б, 3) -Б, 4) -В, 5) -Г.
2 вариант: 1) -В, 2) -В, 3) -Г, 4) -А, 5) -А