СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Урок по теме "Сложение дробей с разными знаменателями"

Категория: Математика

Нажмите, чтобы узнать подробности

Урок по теме "Сложение и вычитание дробей с разными знаменателями" - это урок изучения нового материала. На уроке используется прием "Отсроченная отгадка" (при устной работе дети сталкиваются с примером сложения дробей с разными знаменателями, который решаем используя проблемную и исследовательские задачи).

Просмотр содержимого документа
«Открытый_урок»


Тема: «Сложение дробей с разными знаменателями» (тема на доске закрыта, учащиеся сами должны прийти к названию темы).

Тип урока: урок постановки учебной задачи (урок по ознакомлению учащихся с новым материалом).

Формы работы: индивидуальная, фронтальная, парная, групповая.

Методы обучения: словесный, наглядный, практический, проблемный.

Оборудование: компьютер, мультимедийный проектор, раздаточный материал (карточки).

Цели урока:

Предметные: построить алгоритм сложения дробей с разными знаменателями, тренировать способность к его практическому использованию.

Регулятивные: учить планировать, контролировать, оценивать свои действия.

Коммуникативные: учить формулировать собственное мнение и позицию, учить сотрудничать и принимать мнения своих одноклассников.

Личностные: учить использовать полученную информацию для решения образовательных задач.

Метапредметные: учить обнаруживать пробелы в знаниях и уметь их восполнять.



Ход урока:

1. Организационный момент

Стихотворение. В урочный день

В урочный час

Я рада снова видеть вас.

Присаживайтесь

Перед началом урока хочу предложить вам старинную суфийскую притчу «Делёж верблюдов».

- Живший некогда Суфий хотел сделать так, чтобы ученики после его смерти нашли подходящего им учителя Пути. Поэтому в завещании, после обязательного по закону раздела имущества, он оставил своим ученикам семнадцать верблюдов с таким указанием: «Разделите верблюдов между самым старшим, средним по возрасту и самым младшим из вас следующим образом: старшему пусть будет половина, среднему — треть, а младшему — одна девятая». Когда Суфий умер, и завещание было прочитано, ученики вначале были изумлены таким неумелым распределением имущества Мастера. Одни предлагали: «Давайте владеть верблюдами сообща»; другие искали совета и затем говорили: «Нам советовали разделить способом, наиболее близким к указанному»; третьим судья посоветовал продать верблюдов и поделить деньги; а ещё некоторые считали, что завещание утратило свою законную силу, поскольку его условия не могут быть выполнены. Спустя некоторое время ученики пришли к мысли, что в завещании Мастера мог быть какой-то скрытый смысл, и они стали расспрашивать повсюду о человеке, который может решать неразрешимые задачи. К кому бы они ни обращались, никто не мог помочь им, пока они не постучали в дверь Хазрата Али, зятя Пророка. Он сказал: «Вот вам решение. Я добавлю одного верблюда к этим семнадцати. Из восемнадцати верблюдов вы возьмете половину — девять верблюдов — для старшего ученика. Второй ученик возьмет треть — то есть шесть верблюдов. Третий получит одну девятую — двух верблюдов. Это как раз семнадцать. Остался один — мой верблюд, он вернётся ко мне». Вот так ученики нашли себе учителя.

- Какой серьёзной темой мы начали заниматься в этой четверти? ( обыкновенные дроби)

- Чему мы уже научились? (сокращать дроби, отмечать их на координатном луче, приводить к наименьшему общему знаменателю, сравнивать дроби с разными знаменателями, складывать дроби с одинаковыми знаменателями, выделять целую часть).

- Как вы думаете, куда дальше в изучении дробей мы продолжим продвигаться? (мы должны научиться производить с ними все арифметические действия).

Прием «Отсроченная отгадка»

Оцените равенства:

Оценить последнее равенство учащиеся не могут, не хватает знаний

Учитель: предлагаю отложить проверку и начать урок

II. Актуализация знаний и фиксация затруднений.

- А начнём мы как всегда с устной работы, потому что, чтобы узнать что-то новое …(необходимо повторить уже изученный материал).

Задания для устной работы: (презентация)

1) Составь неправильную дробь и перейди к смешанному числу.

2) Определи координаты обозначенных точек на координатном луче.

Каким правилом сложения и вычитания дробей вы воспользовались? Нам с вами вразброс даны части алгоритма по сложению и вычитанию дробей с равными знаменателями. Работая в парах, восстановим алгоритм по шагам. На обсуждение дается 30 секунд.

  1. Сложить (или вычесть) числители и записать в числитель суммы (или разности).

  2. Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности).

  3. Если возможно, сократить полученную дробь и выделить из нее целую часть

- С этим заданием справились хорошо

Проблемная задача. На день рождения Коля пригласил 7 друзей. Мама купила к чаю два торта и разделила первый торт на 8 частей. Два товарища ушли раньше других. Поэтому второй торт мама делила уже на 6 частей. Сколько частей от двух тортов в общей сложности получил именинник?

  1. Сформулируем изобретательскую задачу. От первого торта Коля получил 1/8, а от второго 1/6. Как сложить 1/8 и 1/6?

Общий вопрос: Как сложить две дроби с разными знаменателями?

  1. Противоречие: Знаем, как сложить дроби, если у них одинаковые знаменатели. Необходимо сложить дроби, у которых знаменатели разные.

ИКР: сложить дроби с разными знаменателями, умея складывать дроби с одинаковыми знаменателями.

  1. Ресурсы:

материально-технические: использовать автоматическое счетное устройство – дорого, долго;

человеческие: попросить выполнить операцию учителя или любого другого знающего человека – не удобно, не всегда находится рядом;

внутренние ресурсы: использовать собственные знания и ресурсы самой системы - числитель и знаменатель дроби.

Эффективнее использовать внутренние ресурсы без привлечения ресурсов из вне и без лишних затрат.

  1. Решение: принцип воздействия на систему.

Изменить обе дроби так, чтобы они стали дробями с одинаковыми знаменателями и сложить их по известному правилу.

Следующее задание:

Работа в группах: Предлагаю поработать в группах. Ваши результаты не забудьте прикрепить на доску. Время выполнения: 5 минут.

Закрасьте указанные части прямоугольника разным цветом. Какая часть закрашена?

а) б)

Каждая группа показывает свои результаты работы. Проводим обсуждение. Приходим к выводу о том, что результат суммы дробей является частью этого же прямоугольника.

- Чем отличается предыдущее задание, с которым вы все хорошо справились от этого?

Что же нам надо сделать, чтобы выполнить задание, определить, кто его выполнил правильно?

Попробуйте сформулировать тему урока и записать в тетрадь

Планирование деятельности

У каждого на столе таблички из старого алгоритма и несколько чистых листочков. Составляют алгоритм

  1. Привести дроби к НОЗ, найти дополнительные множители

  2. Сложить (или вычесть) числители и записать в числитель суммы (или разности).

  3. Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности).

  4. Если возможно, сократить полученную дробь и выделить из нее целую часть

Вернемся к нашим выражениям и найдем их значения, используя полученный алгоритм (будьте внимательны при оформлении задания)

  1. Приведем дроби к наименьшему общему знаменателю, НОК (8,6) = 24

  2. Дополнительный множитель для первой дроби равен 3, для второй дроби – 4

  3. Складываем числители, знаменатель оставляем без изменения.

В математике нельзя пропускать ни одного слова в некоторых правилах. Общий знаменатель и наименьший общий знаменатель не всегда совпадают. Послушайте притчу об одном мэре.

Когда ещё не было электричества, мэр одного города любил вечером гулять по городским улицам. Как-то он столкнулся с одним горожанином, у него на лбу выскочила шишка. На следующий день он издал указ: “В тёмное время суток на улицу выходить с фонарём”. А вечером на него налетел тот же горожанин. Мэр потребовал у него фонарь.

- Вот, - сказал прохожий.

- А где свеча? – спросил мэр.

- А в указе не написано, что в фонаре должна быть свеча, - ответил тот.

Мэр издал второй указ: “В тёмное время суток на улицу выходить с фонарём со свечой”.

В третий день история повторилась.

Мэр уже вышел из себя.

- Думаете, что ответил мэру прохожий?

*В приказе не написано, что свеча фонаря должна быть зажжена.

Мэру пришлось издать указ третий раз, только после этого прохожий оставил его в покое.

Поэтому наша задача – хорошо знать алгоритм и уметь его применять.

Физминутка для глаз

Работа в парах, после выполнения проводится самопроверка по образцу (слайд). Каждой паре выдается карточка с заданиями.

Рабочий в первый день выполнил , а во второй - всего заказа. Какую часть заказа сделал рабочий за два дня?

Туристы прошли до привала пути, после привала – еще пути. Какую часть пути они прошли?

Самостоятельная работа с проверкой по эталону.

По соответствию чисел (ответов) и букв составить слово.

Ответы:

у

м

ё

и

с

б



2/9 + 3/7 и 13/21 11/80-11/90 м 11/720 3/5 + 1/6 с 23/30 4/3-4/9 ё 8/9 3/5 + 2/7 у 11/35 3/7 + 2/11 б 47/77 мёбиус

Мёбиус А. (1825 – 1908)– немецкий математик. Мебиус указал простую модель односторонней поверхности. Её легко изготовить, перекрутив на пол-оборота один конец прямоугольной бумажной полоски, и приклеив его к другому концу этой полоски. Эту модель с тех пор называют Лист Мёбиуса. Показать детям модель и объяснить, почему она является односторонней.



А сейчас каждый проверит сам себя – насколько он сам понял алгоритм сложения и может его применить. Признак того, что вы работу закончили – поднятая рука. Получаете ключ для выполнения самопроверки.

После выполнения работы учащиеся проверяют свои ответы и отмечают правильно решённые примеры, исправляют допущенные ошибки, проводится выявление причин допущенных ошибок.

Учащимся предлагается вернуться к загадке в начале урока и оценить последнее равенство.

.

Если равенство «верное», то это необходимо доказать. Если равенство «неверное», то исправить.

Прием «ЗХУ».

Учащимся предлагается заполнить таблицу «Знал – Хотел узнать – Узнал» относительно темы урока и сделать вывод.

– Что нового узнали на уроке?

– Какую цель мы ставили в начале урока?

– Наша цель достигнута?

– Что нам помогло справиться с затруднением?

– Какие знания нам пригодились при выполнении заданий на уроке?

– Как вы можете оценить свою работу?

Домашнее задание

Учащимся предлагается домашнее задание, которое состоит из двух частей:

  1. задания базового уровня, обязательные для выполнения.

  2. задания повышенного уровня, по выбору.





3


Просмотр содержимого презентации
«к_открытому_уроку»

Суфийская притча «Делёж верблюдов»

Суфийская притча «Делёж верблюдов»

  • Живший некогда Суфий хотел сделать так, чтобы ученики после его смерти нашли подходящего им учителя Пути. Поэтому в завещании, после обязательного по закону раздела имущества, он оставил своим ученикам семнадцать верблюдов с таким указанием: «Разделите верблюдов между самым старшим, средним по возрасту и самым младшим из вас следующим образом: старшему пусть будет половина, среднему — треть, а младшему — одна девятая».
  • Когда Суфий умер, и завещание было прочитано, ученики вначале были изумлены таким неумелым распределением имущества Мастера. Одни предлагали: «Давайте владеть верблюдами сообща»; другие искали совета и затем говорили: «Нам советовали разделить способом, наиболее близким к указанному»; третьим судья посоветовал продать верблюдов и поделить деньги; а ещё некоторые считали, что завещание утратило свою законную силу, поскольку его условия не могут быть выполнены.
  • Спустя некоторое время ученики пришли к мысли, что в завещании Мастера мог быть какой-то скрытый смысл, и они стали расспрашивать повсюду о человеке, который может решать неразрешимые задачи. К кому бы они ни обращались, никто не мог помочь им, пока они не постучали в дверь Хазрата Али, зятя Пророка. Он сказал:
  • — Вот вам решение. Я добавлю одного верблюда к этим семнадцати. Из восемнадцати верблюдов вы возьмете половину — девять верблюдов — для старшего ученика. Второй ученик возьмет треть — то есть шесть верблюдов. Третий получит одну девятую — двух верблюдов. Это как раз семнадцать. Остался один — мой верблюд, он вернётся ко мне.
Какой серьезной темой мы занимались в это четверти?   Чему мы уже научились?   Как вы думаете, куда дальше в изучении дробей мы продолжим продвигаться?

Какой серьезной темой мы занимались в это четверти? Чему мы уже научились? Как вы думаете, куда дальше в изучении дробей мы продолжим продвигаться?

Оцените равенства:

Оцените равенства:

Актуализация знаний  Составь неправильную дробь и перейди к смешанному числу :

Актуализация знаний

Составь неправильную дробь и перейди к смешанному числу :

Актуализация знаний  Определи координаты обозначенных точек на координатном луче :

Актуализация знаний

Определи координаты обозначенных точек на координатном луче :

Выполните проверку:  1. Приведите дробь к знаменателю 18   а) б) в) г)   2. Найдите неправильную дробь:   а) б) в) г)   3. Найдите правильную дробь:   а) б) в) г)    4. Сократите дробь   а) б) в) г)   5. Представьте неправильную дробь в виде смешанного числа:   а) б) в) г)

Выполните проверку: 1. Приведите дробь к знаменателю 18 а) б) в) г) 2. Найдите неправильную дробь: а) б) в) г) 3. Найдите правильную дробь: а) б) в) г) 4. Сократите дробь а) б) в) г) 5. Представьте неправильную дробь в виде смешанного числа: а) б) в) г)

Актуализация знаний  Вычисли устно:

Актуализация знаний

Вычисли устно:

Какими правилами сложения и вычитания дробей вы воспользовались?   Нам с вами вразброс даны части алгоритма по сложению и вычитанию дробей с равными знаменателями. Работая в парах, восстановите алгоритм по шагам. На обсуждение дается 30 секунд

Какими правилами сложения и вычитания дробей вы воспользовались? Нам с вами вразброс даны части алгоритма по сложению и вычитанию дробей с равными знаменателями. Работая в парах, восстановите алгоритм по шагам. На обсуждение дается 30 секунд

Если возможно, сократить полученную дробь и выделить из нее целую часть Сложить (или вычесть) числители и записать в числитель суммы (или разности).   Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности).

Если возможно, сократить полученную дробь и выделить из нее целую часть

Сложить (или вычесть) числители и записать в числитель суммы (или разности).

Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности).

Сложить (или вычесть) числители и записать в числитель суммы (или разности).   Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности). Если возможно, сократить полученную дробь и выделить из нее целую часть С этим заданием справились хорошо

Сложить (или вычесть) числители и записать в числитель суммы (или разности).

Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности).

Если возможно, сократить полученную дробь и выделить из нее целую часть

С этим заданием справились хорошо

Проблемная задача На день рождения Коля пригласил 7 друзей. Мама купила к чаю 2 торта и разделила первый на8 частей. Два товарища ушли раньше других. Поэтому второй торт мама разделила уже на 6 частей. Сколько частей от двух тортов в общей сложности получил именинник? Сформулируем задачу От первого торта Коля получил , а от второго - . Как сложить и ?

Проблемная задача

На день рождения Коля пригласил 7 друзей. Мама купила к чаю 2 торта и разделила первый на8 частей. Два товарища ушли раньше других. Поэтому второй торт мама разделила уже на 6 частей. Сколько частей от двух тортов в общей сложности получил именинник?

Сформулируем задачу

От первого торта Коля получил , а от второго - . Как сложить и ?

Работа в группах Предлагаю вам поработать в группах. Ваши результаты не забудьте прикрепить на доску. Время выполнения 5 минут.

Работа в группах

Предлагаю вам поработать в группах. Ваши результаты не забудьте прикрепить на доску. Время выполнения 5 минут.

Результаты работы в группах +

Результаты работы в группах

+

Тема урока «Сложение и вычитание дробей с разными знаменателями»  Цель урока:   Учимся складывать и вычитать дроби с разными знаменателями

Тема урока

«Сложение и вычитание дробей с разными знаменателями»

Цель урока:

Учимся складывать и вычитать дроби с разными знаменателями

Алгоритм сложения (вычитания) дробей с разными знаменателями Сложить (или вычесть) числители и записать в числитель суммы (или разности).   Если возможно, сократить полученную дробь и выделить из нее целую часть Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности). Привести дроби к НОЗ, найти дополнительные множители

Алгоритм сложения (вычитания) дробей с разными знаменателями

Сложить (или вычесть) числители и записать в числитель суммы (или разности).

Если возможно, сократить полученную дробь и выделить из нее целую часть

Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности).

Привести дроби к НОЗ, найти дополнительные множители

Алгоритм сложения (вычитания) дробей с разными знаменателями Привести дроби к НОЗ, найти дополнительные множители Сложить (или вычесть) числители и записать в числитель суммы (или разности).   Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности). Если возможно, сократить полученную дробь и выделить из нее целую часть

Алгоритм сложения (вычитания) дробей с разными знаменателями

Привести дроби к НОЗ, найти дополнительные множители

Сложить (или вычесть) числители и записать в числитель суммы (или разности).

Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности).

Если возможно, сократить полученную дробь и выделить из нее целую часть

В математике нельзя пропускать ни одного слова в некоторых правилах. Общий знаменатель и наименьший общий знаменатель не всегда совпадают. Послушайте одну притчу о мере.

В математике нельзя пропускать ни одного слова в некоторых правилах. Общий знаменатель и наименьший общий знаменатель не всегда совпадают. Послушайте одну притчу о мере.

Когда ещё не было электричества, мэр одного города любил вечером гулять по городским улицам. Как-то он столкнулся с одним горожанином, у него на лбу выскочила шишка. На следующий день он издал указ: “В тёмное время суток на улицу выходить с фонарём”. А вечером на него налетел тот же горожанин. Мэр потребовал у него фонарь. - Вот, - сказал прохожий. - А где свеча? – спросил мэр. - А в указе не написано, что в фонаре должна быть свеча, - ответил тот. Мэр издал второй указ: “В тёмное время суток на улицу выходить с фонарём со свечой”. В третий день история повторилась. Мэр уже вышел из себя. - Думаете, что ответил мэру прохожий? *В приказе не написано, что свеча фонаря должна быть зажжена. Мэру пришлось издать указ третий раз, только после этого прохожий оставил его в покое. Поэтому наша задача – хорошо знать алгоритм и уметь его применять . Притча о мэре

Когда ещё не было электричества, мэр одного города любил вечером гулять по городским улицам. Как-то он столкнулся с одним горожанином, у него на лбу выскочила шишка. На следующий день он издал указ: “В тёмное время суток на улицу выходить с фонарём”. А вечером на него налетел тот же горожанин. Мэр потребовал у него фонарь.

- Вот, - сказал прохожий.

- А где свеча? – спросил мэр.

- А в указе не написано, что в фонаре должна быть свеча, - ответил тот.

Мэр издал второй указ: “В тёмное время суток на улицу выходить с фонарём со свечой”.

В третий день история повторилась.

Мэр уже вышел из себя.

- Думаете, что ответил мэру прохожий?

*В приказе не написано, что свеча фонаря должна быть зажжена.

Мэру пришлось издать указ третий раз, только после этого прохожий оставил его в покое.

Поэтому наша задача – хорошо знать алгоритм и уметь его применять .

Притча о мэре

Работа в парах по карточкам Рабочий в первый день выполнил , а во второй - всего заказа. Какую часть заказа сделал рабочий за два дня? 2. Туристы прошли пути, после привала - еще пути. Какую часть пути они прошли?

Работа в парах по карточкам

  • Рабочий в первый день выполнил , а во второй - всего заказа. Какую часть заказа сделал рабочий за два дня?

2. Туристы прошли пути, после привала - еще пути. Какую часть пути они прошли?

Самостоятельная работа с самопроверкой

Самостоятельная работа с самопроверкой

Рефлексия   – Что нового узнали на уроке?  – Какую цель мы ставили в начале урока?  – Наша цель достигнута?  – Что нам помогло справиться с затруднением?  – Какие знания нам пригодились при выполнении заданий на уроке?  – Как вы можете оценить свою работу? Домашнее задание    Учебник стр. 57, п.11 правило   № 360 (1-3 столбики)

Рефлексия

– Что нового узнали на уроке? – Какую цель мы ставили в начале урока? – Наша цель достигнута? – Что нам помогло справиться с затруднением? – Какие знания нам пригодились при выполнении заданий на уроке? – Как вы можете оценить свою работу?

Домашнее задание Учебник стр. 57, п.11

правило № 360 (1-3 столбики)