Положительные и отрицательные числа. Целые числа.
Числа со знаком + называют положительными.
Числа со знаком – называют отрицательными.
Прямую с выбранными на ней началом отсчета , единичным отрезком и направлением называют координатной прямой.
Число, показывающее положение точки на прямой , называют координатой этой точки.
Два числа , отличающиеся друг от друга только знаками, называют противоположными числами.
Натуральные числа , противоположные числа и нуль называют целыми числами.
Модулем числа а называют расстояние ( в единичных отрезках) от начала координат до точки А(а).
Модуль числа не может быть отрицательным. Для положительного числа и нуля он равен самому числу, а для отрицательного – противоположному числу.
Противоположные числа имеют равные модули.
Сравнение чисел.
Любое отрицательное число меньше любого положительного числа.
Из двух отрицательных чисел меньше то, модуль которого больше.
Нуль больше любого отрицательного числа , но меньше любого положительного числа.
На горизонтальной координатной прямой точка с большей координатой лежит правее точки с меньшей координатой.
Сложение и вычитание положительных и отрицательных чисел.
Любое число от прибавления положительного числа увеличивается , а от прибавления отрицательного числа уменьшается.
Сумма двух противоположных чисел равна нулю.
Чтобы сложить два отрицательных числа , надо: а)сложить их модули; б) поставить перед полученным числом знак -- .
Чтобы сложить два числа с разными знаками, надо: а) из большего модуля слагаемых вычесть меньший; б) поставить перед полученным числом знак того слагаемого , модуль которого больше.
Чтобы из данного вычесть другое ,надо к уменьшаемому прибавить число , противоположное вычитаемому: а-б=а+(-б)
Любое выражение содержащее лишь знаки сложения и вычитания , можно рассматривать как сумму.
Чтобы найти длину отрезка на координатной прямой ,надо из координаты его правого конца вычесть координату его левого конца.
Умножение и деление положительных и отрицательных чисел.
Чтобы перемножить два числа с разными знаками , надо перемножить модули этих чисел и поставить перед полученным числом знак -.
Чтобы перемножить два отрицательных числа , надо перемножить их модули.
Чтобы разделить отрицательное число на отрицательное , надо разделить модуль делимого на модуль делителя.
При делении чисел с разными знаками , надо: а) разделить модуль делимого на модуль делителя; б) поставить перед полученным числом знак -.
Рациональные числа.
Число , которое можно записать в виде отношения а/n , где а-целое число , а n-натуральное число , называют рациональным числом.
Любое целое число является рациональным.
Сумма , разность и произведение рациональных чисел тоже рациональные числа.
Если делитель отличен от нуля , то частное двух рациональных чисел тоже рациональное число.
Любое рациональное число можно записать либо в сиде десятичной дроби ( в частности целого числа ) , либо в виде периодической дроби.
Сложение рациональных чисел обладает переместительным и сочетательным свойствами.
Умножение рациональных чисел тоже обладает переместительным и сочетательным свойствами.
Произведение может быть равно нулю лишь в том случае , когда хотя бы один из множителей равен нулю.
Умножение рациональных чисел обладает распределительным свойством относительно сложения.
Решение уравнений.
Если перед скобками стоит знак + , то можно опустить скобки и этот знак + , сохранив знаки слагаемых , стоящих в скобках . Если первое слагаемое записано без знака , то его надо записать со знаком + .
Чтобы раскрыть скобки перед которыми стоит знак -- , надо заменить этот знак на + , поменяв знаки всех слагаемых в скобках на противоположные , а потом раскрыть скобки.
Подобные слагаемые.
Если выражение является произведением числа и одной или нескольких букв , то это число называют числовым коэффициентом ( или просто коэффициентом ).
Слагаемые , имеющие одинаковую буквенную часть, называют подобными слагаемыми.
Чтобы сложить ( или говорят : привести ) подобные слагаемые , надо сложить их коэффициенты и результат умножить на общую буквенную часть.
Решение уравнений.
Корни уравнения не изменяются , если обе части уравнения умножить или разделить на одно и то же число , не равное нулю.
Корни уравнения не изменяются , если какое –нибудь слагаемое перенести из одной части уравнения в другую , изменив при этом его знак.
Уравнение , которое можно привести к виду ах=в с помощью переноса слагаемых и приведения подобных , называют линейным уравнением с одним неизвестным.