Задачи по комбинаторики
Задача 1: Сколькими способами можно составить список из 5 учеников?
Ответ: перестановки, 5! = 120.
Задача 2: В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?
Ответ: размещения из 11 по 2, А211= 110.
Задача 3: Расписание на день содержит 5 уроков. Определить количество возможных расписаний при выборе из 14 предметов, при условии, что ни один предмет не стоит дважды.
Ответ: размещения из 14 по 5, 1320.
Задача 4: Сколько различных трехцветных флагов можно сделать, комбинируя синий, красный и белый цвета?
Ответ: перестановки, 6 способов.
Задача 5: В классе 24 ученика. Сколькими способами можно сформировать команду из 4 человек для участия в математической олимпиаде?
Ответ: сочетания из 24 по 4,
Задача 6: Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только 1 раз?
Ответ: перестановки, 6 способов.
Задача 7: Сколькими различными способами можно избрать из 15 человек делегацию в составе 3 человек?
Ответ: сочетания, 455 способами.
Задача 8: Из ящика, где находится 15 шаров, нумерованных последовательно от 1 до 15, требуется вынуть 3 шара. Определить число возможных комбинаций при этом?
Ответ: размещения, 2830 способами.
Задача 9: Сколько четырехзначных чисел можно составить из цифр 0, 1, 2, 3, если каждая цифра входит в изображение числа только 1 раз?
Ответ: перестановки, 4! – 3! =18.
Задача 10: Сколькими способами можно разместить 6 пассажиров в четырехместной каюте?
Ответ: размещения из 6 элементов по 4, 360 способами.
Задача 11: Сколькими способами можно выбрать 2 детали из ящика, содержащего 10 деталей?
Ответ: сочетания из 10 элементов по 2, 45 способами.
Задача 12: Бригадир должен отправить на работу бригаду из 4 человек. Сколько бригад по 4 человека в каждой можно составить из 13 человек?
Ответ: сочетания из 13 по 4, 715 бригад.
Задача 13: При встрече 16 человек обменялись рукопожатиями. Сколько всего было сделано рукопожатий?
Ответ: сочетания из 16 по 2, 120 рукопожатий.
Задача 14: Группа учащихся в 30 человек пожелала обменяться своими фотокарточками. Сколько всего фотокарточек потребовалось для этого?
Ответ: сочетание из 30 по 2, 435 фотокарточек.
Задача 15: Сколько различных плоскостей можно провести через 10 точек, если никакие три из них не лежат на одной прямой и никакие четыре точки не лежат в одной плоскости?
Ответ: сочетание из 10 по 3; 120 точек
Задача 16: Сколько существует различных семизначных телефонных номеров?
Ответ: 107.
Задача 17: Сколько существует различных семизначных телефонных номеров, если в каждом номере нет повторяющихся цифр?
Ответ: размещение из 10 по 7.
Задача 18: Сколько существует таких перестановок 7 учеников, при которых 3 определенных ученика находятся рядом друг с другом? Ответ: 720 = 3! · 5!
Задача 19: На книжной полке стоит собрание сочинений в 30 томах. Сколькими различными способами их можно переставить, чтобы: а) тома 1 и 2 стояли рядом; б) тома 3 и 4 рядом не стояли?
Ответ: а)2∙29!; б)28∙29!
Задача 20: Сколько существует трёхзначных чисел, все цифры которых нечётные и различные?
Ответ: размещение из 5 по 3, 60.
Задача 21: У одного мальчика имеется 10 марок для обмена, а у другого – 8. Сколькими способами они могут обменять 2 марки одного на 2 марки другого?
Ответ: сочетания, С210·С28 = 1260.