СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до 07.06.2025
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
Задание 19 Вариант 43 ЕГЭ 2020 из 50 вариантов
Переливаем на 4 балла
На едином государственном экзамене по математике «добавили воды». В последнем сборнике «ЕГЭ 2019: Математика. Профильный уровень. 36 вариантов. Типовые тестовые задания от разработчиков ЕГЭ и 800 заданий» появилась новая задача олимпиадного уровня на переливания. Рассмотрим вариант №3, задание под номером 19.
Задача. У Жени нет источника воды, но есть три ведра различных объёмов, в двух их которых есть вода. За один шаг Женя переливает воду из ведра, в котором она есть, в другое ведро. Переливание заканчивается в тот момент, когда или первое ведро опустеет, или второе ведро заполнится. Выливать воду из ведер запрещается.
а) Мог ли Женя через несколько шагов получить в одном из вёдер ровно 6 л воды, если сначала у него были ведра объёмами 5 л и 8 л, полные воды, а также пустое ведро объёмом 9 л?
б) Мог ли Женя через несколько шагов получить равные объёмы воды во всех ведрах, если сначала у него были ведра объёмами 7 л и 8 л, полные воды, а также пустое ведро объёмом 10 л?
в) Сначала у Жени были ведра объёмами 5 л и 10 л, полные воды, а также пустое ведро объёмом n литров. Какое наибольшее натуральное значение может принимать n, если известно, что как бы ни старался Женя, он не сможет получить через несколько шагов ровно 6 л воды в одном из вёдер?
Решение.
а) Составим таблицу переливаний
Переливание | 5 л ведро | 8 л ведро | 9 л ведро |
Начальное состояние | 5 | 8 | 0 |
1 | 5 | 0 | 8 |
2 | 4 | 0 | 9 |
3 | 4 | 8 | 1 |
4 | 5 | 7 | 1 |
5 | 0 | 7 | 6 |
б) Если сначала у Жени были ведра объёмами 7 л и 8 л, полные воды, а также пустое ведро объёмом 10 л, то он не может получить равные объёмы воды во всех ведрах, так как на каждом шаге у него должно быть либо одно полное ведро, либо одно пустое.
в) Рассмотрим случай n =15. Составим таблицу возможных переливаний
Переливание | 5 л ведро | 1 л ведро | 15 л ведро |
Начальное состояние | 5 | 10 | 0 |
1 | 0 | 10 | 5 |
2 | 0 | 0 | 15 |
3 | 5 | 0 | 10 |
4 | 0 | 5 | 10 |
5 | 5 | 5 | 5 |
Мы перебрали все возможные варианты. Получить 6 л воды в одном ведре невозможно. Переливая (то есть складывая или вычитая) объёмы, кратные числу 5, в вёдра, объёмы которых тоже кратны 5, мы получаем числа, кратные 5, поэтому получить 6 литров невозможно.
Заметим, что если взять n 15, то таблица переливаний полностью повторится, так как в третье ведро входит вся вода и в третье ведро невозможно налить более 15 л. Таким образом, для любого натурального n ≥ 15 Женя не сможет получить через несколько шагов ровно 6 л воды в одном из вёдер. Наибольшего соответствующего натурального значения n , не существует. Наименьшее – 15.
В сборнике приведён ответ: n = 14, но это наибольшее значение n, при котором можно набрать 6 литров. Покажем это, составим таблицу переливаний
Переливание | 5 л ведро | 10 л ведро | 14 л ведро |
Начальное состояние | 5 | 10 | 0 |
1 | 5 | 0 | 10 |
2 | 1 | 0 | 14 |
3 | 0 | 1 | 14 |
4 | 5 | 1 | 9 |
5 | 0 | 6 | 9 |
ОТВЕТ: а) да; б) нет; в) наибольшего натурального значения n не существует.
В вышеназванном сборнике приведено решения 19 задания из первого варианта.
Задача 2. У Бори нет источника воды, но есть три ведра различных объёмов, в двух их которых есть вода. За один шаг Боря переливает воду из ведра, в котором она есть, в другое ведро. Переливание заканчивается в тот момент, когда или первое ведро опустеет, или второе ведро заполнится. Выливать воду из ведер запрещается.
а) Мог ли Боря через несколько шагов получить в одном из вёдер ровно 2 л воды, если сначала у него были ведра объёмами 4 л и 7 л, полные воды, а также пустое ведро объёмом 8 л?
б) Мог ли Боря через несколько шагов получить равные объёмы воды во всех ведрах, если сначала у него были ведра объёмами 5 л и 7 л, полные воды, а также пустое ведро объёмом 10 л?
в) Сначала у Боря были ведра объёмами 3 л и 6 л, полные воды, а также пустое ведро объёмом n л. Какое наибольшее натуральное значение может принимать n, если известно, что как бы ни старался Боря, он не сможет получить через несколько шагов ровно 4 л воды в одном из вёдер?
Попробуйте решить ее самостоятельно.
© 2020, Затеева Валентина Павловна 824 1