Задание № 7. Производная функции.
1. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: 1
2. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: 0,75
3. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: -0,5
4. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: 2
5. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: -0,75
6. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: 1,4
7. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: -0,25
8. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: 0,4
9. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: -0,8
10. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ: -1,25
11. На рисунке изображен график функции y=f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите значение производной в точке 8.
Ответ: 1,25
12. На рисунке изображён график дифференцируемой функции y=f(x),определённой на интервале (− 5; 5). Найдите точку из отрезка [− 2; 4], в которой производная функции f(x) равна 0.
Ответ: 1
13. На рисунке изображён график дифференцируемой функции y=f(x),определённой на интервале (1; 10). Найдите точку из отрезка [2; 6], в которой производная функции f(x) равна 0.
Ответ: 3
14. На рисунке изображён график дифференцируемой функции y=f(x),определённой на интервале (− 11; − 2). Найдите точку из отрезка [− 10; − 4], в которой производная функции f(x) равна 0.
Ответ: -7
15. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (− 11; − 1). Найдите точку из отрезка [− 7; − 2], в которой производная функции f(x) равна 0.
Ответ: -4
16. На рисунке изображён график функции y=f(x), определённой на интервале (− 5; 9). Найдите количество точек, в которых производная функции f(x) равна 0.
Ответ: 6
17. На рисунке изображён график функции y=f(x), определённой на интервале (− 5; 8). Найдите количество точек, в которых производная функции f(x) равна 0.
Ответ: 8
18. На рисунке изображён график функции y=f(x), определённой на интервале (− 3; 8). Найдите количество точек, в которых производная функции f(x) равна 0.
Ответ: 7
19. На рисунке изображён график функции y=f(x), определённой на интервале (− 6; 6). Найдите количество решений уравнения f '(x)=0 на отрезке [− 4,5; 2,5].
Ответ: 4
20. На рисунке изображён график функции y=f '(x) — производной функции f(x), определённой на интервале (2; 13). Найдите точку максимума функции f(x).
Ответ: 9
21. На рисунке изображён график функции y=f '(x) — производной функции f(x), определённой на интервале (− 6; 3). Найдите точку минимума функции f(x).
Ответ: -2
22. На рисунке изображён график функции y=f '(x) — производной функции f(x), определённой на интервале (1; 10). Найдите точку минимума функции f(x).
Ответ: 9
23. На рисунке изображён график функции y=f '(x) — производной функции f(x), определённой на интервале (− 5; 5). Найдите точку максимума функции f(x).
Ответ: -1
24. На рисунке изображён график функции y=f(x), определённой на интервале (− 7; 7). Определите количество целых точек, в которых производная функции положительна.
Ответ: 8
25. На рисунке изображён график функции y=f(x), определённой на интервале (− 7; 7). Определите количество целых точек, в которых производная функции отрицательна.
Ответ: 5
26. На рисунке изображён график функции y=f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, x4, x5, x6, x7, x8. В скольких из этих точек производная функции f(x) отрицательна?
Ответ: 4
27. На рисунке изображён график функции y=f(x). На оси абсцисс отмечены десять точек: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. В скольких из этих точек производная функции f(x) положительна?
Ответ: 3
28. На рисунке изображён график дифференцируемой функции y=f(x) и отмечены девять точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9. В скольких из этих точек производная функции f(x) положительна?
Ответ: 4
29. На рисунке изображён график дифференцируемой функции y=f(x) и отмечены шесть точек на оси абсцисс: x1, x2, x3, x4, x5, x6. В скольких из этих точек производная функции f(x) отрицательна?
Ответ: 3
30. На рисунке изображён график y=f '(x) — производной функции f(x). На оси абсцисс отмечено шесть точек: x1, x2, x3, x4, x5, x6. Сколько из этих точек принадлежит промежуткам возрастания функции f(x)?
Ответ: 3
31. На рисунке изображён график y=f '(x) — производной функции f(x). На оси абсцисс отмечено семь точек: x1, x2, x3, x4, x5, x6, x7. Сколько из этих точек принадлежит промежуткам убывания функции f(x)?
Ответ: 2
32. На рисунке изображён график y=f '(x) — производной функции f(x). На оси абсцисс отмечено восемь точек: x1, x2, x3, x4, x5, x6, x7, x8. Сколько из этих точек принадлежит промежуткам возрастания функции f(x)?
Ответ: 4
33. На рисунке изображён график y=f '(x) — производной функции f(x). На оси абсцисс отмечено одиннадцать точек: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11. Сколько из этих точек принадлежит промежуткам убывания функции f(x)?
Ответ: 9
34. На рисунке изображён график функции y=f(x). На оси абсцисс отмечены точки − 1, 2, 3, 4. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
Ответ: -1
35. На рисунке изображён график функции y=f(x). На оси абсцисс отмечены точки − 2, − 1, 3, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.
Ответ: -1
36. На рисунке изображен график функции y=f(x) и отмечены точки -2, -1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.
Ответ: 4
37. На рисунке изображен график функции y=f(x) и отмечены точки -2, -1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
Ответ: -2
38. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 2; 9). В какой точке отрезка [2; 8] функция f(x) принимает наибольшее значение?
Ответ: 8
39. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 8; 4). В какой точке отрезка [− 2; 3] функция f(x) принимает наименьшее значение?
Ответ: -2
40. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 3; 8). В какой точке отрезка [− 2; 3] функция f(x) принимает наименьшее значение?
Ответ: 3
41. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 8; 3). В какой точке отрезка [− 6; −1] функция f(x) принимает наибольшее значение?
Ответ: -6
42. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (−9; 8). Найдите точку экстремума функции f(x) на отрезке [−3; 3].
Ответ: -2
43. На рисунке изображён график y=f '(x) — производной функции f(x), определенной на интервале (-11;11). Найдите количество точек экстремума функции f(x) на отрезке [-10;10].
Ответ: 5
44. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 11; 6). Найдите количество точек минимума функции f(x), принадлежащих отрезку [− 6; 4].
Ответ: 1
45. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 3; 19). Найдите количество точек максимума функции f(x), принадлежащих отрезку [− 2; 15].
Ответ: 1
46. На рисунке изображён график y=f '(x) — производной функции f(x), определенной на интервале (-11;3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.
Ответ: 6
47. На рисунке изображён график y=f '(x) — производной функции f(x), определенной на интервале (-2;12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.
Ответ: 6
48. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 2; 11). Найдите абсциссу точки, в которой касательная к графику функции y=f(x) параллельна оси абсцисс
или совпадает с ней.
Ответ: 3
49. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 4; 13). Найдите количество точек, в которых касательная к графику функции y=f(x) параллельна прямой y=−2x−10 или совпадает с ней.
Ответ: 5
50. На рисунке изображён график функции y=f(x), определённой на интервале (− 4; 13). Определите количество точек, в которых касательная к графику функции y=f(x) параллельна прямой y=14.
Ответ: 6
51. На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 4; 6). Найдите абсциссу точки, в которой касательная к графику функции y=f(x) параллельна прямой y=3x или совпадает с ней.
Ответ: 5
52. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x) и отмечены десять точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. В скольких из этих точек функция f(x) положительна?
Ответ: 7
53. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x) и отмечены восемь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8. В скольких из этих точек функция f(x) отрицательна?
Ответ: 3
54. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x) и отмечены десять точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. В скольких из этих точек функция f(x) положительна?
Ответ: 6
55. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x), определённой на интервале (− 7; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [− 5; 2].
Ответ: 3
56. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x), определённой на интервале (− 8; 7). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [− 5; 5].
Ответ: 4
57. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x), определённой на интервале (1;13). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке [2;11].
Ответ: 4
58. На рисунке изображён график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(−1)−F(−8), где F(x) — одна из первообразных функции f(x).
Ответ: 20
59. На рисунке изображён график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(−1)−F(−9), где F(x) — одна из первообразных функции f(x).
Ответ: 24
60. На рисунке изображён график некоторой функции y=f(x). Функция
— одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Ответ: 6
61. На рисунке изображён график некоторой функции y=f(x).Функция
— одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Ответ: 14,5
62. Прямая y=7x-5 параллельна касательной к графику функции y=x2+6x-8.
Найдите абсциссу точки касания.
Ответ:0,5
63. Прямая y=-4x-11 является касательной к графику функции y= x3 +7x2 +7x-6.
Найдите абсциссу точки касания.
Ответ: -1
64. Прямая y=-3x-5 является касательной к графику функции y=x2+7x+c. Найдите c.
Ответ: 20
65. Прямая y=3x+1 является касательной к графику функции y=ax2+2x+3. Найдите a.
Ответ:0,125
66. Прямая y=-5x+8 является касательной к графику функцииy=28x2+bx+15. Найдите b, учитывая, что абсцисса точки касания больше 0.
Ответ: -33
67. Материальная точка движется прямолинейно по закону
где x — расстояние от точки отсчёта в метрах, t — время в секундах, измеренное с момента начала движения. В какой момент времени (в секундах) её скорость была равна 96 м/с?
Ответ: 18
68. Материальная точка движется прямолинейно по закону
где x — расстояние от точки отсчёта в метрах, t — время в секундах, измеренное с момента начала движения. В какой момент времени (в секундах) её скорость была равна 48 м/с?
Ответ: 9
69. Материальная точка движется прямолинейно по закону
где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t=6 с.
Ответ: 20
70. Материальная точка движется прямолинейно по закону
где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t=3 с.
Ответ: 59