СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 25.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Задания ЕГЭ по теме "Законы Ньютона"

Категория: Физика

Нажмите, чтобы узнать подробности

Задания ЕГЭ по теме "Законы Ньютона"

Просмотр содержимого документа
«Задания ЕГЭ по теме "Законы Ньютона"»


Блок 3. Законы Ньютона. Масса. Силы.

  1. Динамика занимается количественным описанием взаимодействия тел

  2. Высказывания Галилея. «Нет действия, нет изменения скорости. Есть действие, есть изменение скорости. Каждому действие есть противодействие.»

  3. И нерция – явление сохранения скорости тел при отсутствии действия со стороны других тел.

  4. Первый закон Ньютона: «Тело сохраняет состояние покоя или равномерного

прямолинейного движения, пока на него не действуют другие тела».

5. Сила – физическая величина, характеризующая действие одного теле на другое, в результате которого возникает ускорение, или деформация. Чем больше сила, тем больше ускорение. F = ma. Измеряется в Ньютонах Н

  1. Инертность – свойство тел сопротивляться изменению скорости.

  2. Масса – мера инертности. m = . Измеряется в кг

  3. Зависимость изменения скорости от массы. Чем больше масса, тем меньше изменение скорости.

  4. Равнодействующая сила равна векторной сумме всех, действующих на тело сил.

  5. Второй закон Ньютона: «В инерциальной системе отсчёта ускорение тела прямо

пропорционально равнодействующей силе и обратно пропорционально массе тела».

  1. Третий закон Ньютона: «Силы, с которыми два тела действуют друг на друга равны по модулю, противоположны по направлении и действуют вдоль прямой, соединяющей эти тела».

  2. Электромагнитные и гравитационные взаимодействия определяют все механические явления в макромире

  3. Механическая модель кристалла – это упругие молекулы, расположенные в узлах кристаллической решётки. Взаимодействие молекул в кристалле, взаимодействие заряженных частиц, носит электромагнитный характер.

  4. Сила упругости – сила, возникающая при деформации и направлена противоположно смещению частиц при деформации. Fупр= - kx, х – деформация тела, k – жёсткость, которая определяется упругими свойствами тела. Сила упругости – это сила реакции тела на внешнее воздействие. Упругое воздействие на тело – это воздействие, после прекращения которого, тело восстанавливает форму.

  5. Сила нормального давления опоры N – сила упругости, действующая на тело со стороны опоры, перпендикулярно её поверхности.

  6. Сила натяженияT – сила упругости, действующая на тело со стороны нити или пружины.

  7. Явление трения – это явление взаимодействия молекул соприкасающихся поверхностей, препятствующее их взаимному перемещению.

  • Сила трения – сила, возникающая при соприкосновении поверхностей тел, препятствующая их относительному перемещению, направленная вдоль поверхности соприкосновения.

  • Сила трения покоя – сила, препятствующая возникновению движения одного тела по поверхности другого. (Она всегда по модулю равна силе, приложенной к телу, но противоположна ей по направлению). Максимальная сила трения покоя не зависит от площади соприкосновения и пропорциональна силе нормального давления. (Fmp.n.)max = μп N, где μп – коэффициент трения покоя, который зависит от качества обработки поверхности и сочетания материалов, из которых изготовлены соприкасающиеся тела.

  • Сила трения скольжения – сила, возникающая при движении и направленная в сторону, противоположную относительной скорости соприкасающихся тел. Она прямо пропорциональна силе нормального давления, но всегда несколько меньше максимальной силе трения покоя. Fmp = μ N

  • Сила трения качения пропорциональна силе нормального давления и обратно пропорциональна радиусу вращения. Fmp = μкач N/R Коэффициент трения качения во много раз меньше коэффициента трения скольжения, т.к. молекулярные связи разрываются при подъёме колеса гораздо быстрее чем при скольжении.

  • Трение в газах и в жидкостях обусловлено взаимодействием молекул поверхности тел с молекулами газа или жидкости. Сила трения в газах и в жидкостях прямо пропорциональна скорости движения тел, а при больших скоростях прямо пропорциональна квадрату скорости движения тела. F mp = β V - при малых скоростях и F mp = β V2 - при больших скоростях, где β – коэффициент сопротивления движению в газах и в жидкостях. Он зависит от формы тела, от рода жидкости и площади лобового сечения.

Гравитационные силы. Космические скорости

  1. Гравитационное взаимодействие – это взаимодействие тел, обладающих массой. Масса – мера гравитации. Сила, с которой тела во Вселенной притягиваются друг к другу, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними F = G M m/R2 - закон всемирного тяготения .G = 6,67 ∙ 10-11 Нм2/кг2 гравитационная постоянная, которая показывает, с какой силой два тела массой по 1 кг притягиваются друг к другу на расстоянии 1 м. М - масса тела, которое притягивает к себе другие тела, m – масса тела, которое притягивается, R – расстояние между центрами тел.

  2. Сила тяжестисила, с которой Земля притягивает к себе тела. На Земле и на различных планетах Fm =mg, где g – ускорение свободного падения на планете. G M m/R2 = mg, отсюда g = G M /R2

  3. Для преодоления силы тяжести телу необходимо сообщить скорости:

  • 7,8 км/сек – 1-я космическая скорость (тело становится спутником Земли).

  • 11,2 км/сек – 2-я космическая скорость (тело становится спутником Солнца). G M m/R2 = mv2/R, v2= G M m/R. Около поверхности Земли v2= R g

  • 42 км/сек – 3-я космическая скорость (тело покидает Солнечную систему).

  • Вес телаВес теласила, с которой тело действует на опору (сила нормального давления), или подвес (сила натяжения). Вес тела в случае горизонтального движения на горизонтальной опоре P=mg;

    • вес тела в случае вертикального движения на горизонтальной опоре или вертикальном подвесе а) движение вверх с ускорением – P = m(g+a), без ускорения - P=mg б) движение вниз с ускорением – P = m(g-a), без ускорения – P = mg.

    • вес тела, движущегося на негоризонтальной опоре и на невертикальном подвесе

будет всегда по модулю равен силе реакции опоры. P = N = Т

  1. Невесомость. Вес тела равен нулю, когда тело находится в свободном падении, т.е. на него действует только сила тяжести

  2. Перегрузки. Вес тела возрастает в несколько раз.

  3. Н а тело, погружённое в жидкость или газ действует выталкивающая сила, равная весу жидкости или газа в объёме этого тела. F = ρgV. Эта сила называется ещё силой Архимеда, которая действует только в гравитационном поле.

Равновесие тел

      1. Виды равновесия: безразличное, неустойчивое и устойчивое.

      2. Условие равновесия: Тело находится в равновесии, если равнодействующая сила равна нулю. При равновесии сумма проекций на любую координатную ось сил, действующих на тело, равна 0. F1x + F2x + F3x +… = 0, F1y + F2y + F3y +… = 0.

      3. У словие равновесия тела, имеющего ось вращения: Тело, имеющее ось вращения, находится в равновесии, если алгебраическая сумма всех моментов сил, действующих на тело, равна 0. Момент силы – величина, равная произведению силы на её плечо. Плечо силы – это кратчайшее расстояние от оси вращения до направления действующей силы. M = Fdмомент силы. M 0, если сила вращает тело по часовой стрелке. M , если сила вращает тело против часовой стрелки.

4. Все простые механизмы: рычаг, блок, ворот, наклонная плоскость, клин, винт не дают выигрыша в работе: во сколько раз мы выигрываем в силе, во столько раз проигрываем в расстоянии. Это «Золотое правило механики».

Решение задач:

Алгоритм решения задач по динамике

  1. Определить характер и направление движения.

  2. Сделать рисунок с указанием системы отсчёта и сил, действующих на тело.

  3. Записать второй закон Ньютона в векторной форме.

  4. Найти проекции векторных величин и записать второй закон Ньютона в проекциях.

  5. Дописать недостающие величины.

  6. Решить систему уравнений относительно неизвестной величины.


Задача 1. На наклонной плоскости длиной 5 м и высотой 3м находится груз массой 50 кг. Коэффициент трения груза о поверхность 0,2. Какую силу, направленную вдоль плоскости нужно приложить, чтобы а) равномерно втащить его наверх;

б) втащить с ускорением 1м/с2

в) какой путь пройдёт груз вверх по наклонной плоскости

если в начале ему сообщить скорость 2м/с? Трение не учитывать.

Решение

а) ΣFx = 0, Fx + mgx + Fтрx = 0, Fx =F, mgx = - mg sinφ, sinφ =h/L, Nx = 0, Fтрx= - μN, F - mg sinφ - μN = 0

ΣFy = 0, Ny + mgy = 0, mgy = - mg cosφ, cosφ =a/L, a2=L2 - h2, N = mg cosφ,

б) ΣFx = max, Fx + mgx + Fтрx = max, Fx =F, mgx = - mg sinφ, sinφ =h/L, Nx = 0, Fтрx= - μN, ax = a, F - mg sinφ - μN = ma

ΣFy = 0, Ny + mgy = 0, mgy = -mg cosφ, cosφ =a/L, a2=L2 + h2, Ny = N = mg cosφ

в) ΣFx = max, mgx + Fтрx = max, mgx = - mg sinφ, sinφ =h/L, Nx = 0, Fтрx= - μmg cosφ, ax = a. mg sinφ - μmg cosφ = ma, а = (mg sinφ - μmg cosφ)/ m, S = v2/2a.







Задача 2. Деревянный брусок массой 2 кг равномерно тянут по деревянной доске, расположенной горизонтально с помощью пружины жёсткостью 100н/м. Пружина наклонена под углом 30 градусов к плоскости. Коэффициент трения равен 0,3. Найти удлинение пружины. Найти силу упругости. Найти силу нормального давления бруска на поверхность.

Решение

а ) ΣFx = 0, Fx + mgx + Fтрx = 0, F = kx, Fx = kxcosφ, mgx = - 0, Nx= 0, Fтрx= - μN. ΣFy = 0, Fy +Ny + mgy = 0, F = kx, Fy = kxsinφ, mgy = - mg , Ny = N.


Задача 3. Брусок массой 400 г, находящийся на столе начинает двигаться под действием груза массой 100 г и за две секунды проходит 80 см. 1. Найти силу трения и коэффициент трения.

2. С каким ускорением движутся бруски?

3. Найти силу натяжения нити.

(для самостоятельного решения).

З адача 4. На рисунке указано направление скорости

движущегося тела и силы, действующей на него.

1. Укажите направление ускорения тела.

2. По какой траектории движется тело? Почему?

3. Когда тело будет находиться в состоянии невесомости:

  • на подъёме,

  • на спуске,

  • в верхней точке траектории.

  • в любой точке траектории.

Решение

Ускорение имеет такое же направление, как и вектор силы тяжести.

Если скорость тела направлена под углом к горизонту и на тело действует только сила тяжести, то тело движется по параболе.

Тело будет находиться в состоянии невесомости всё время движения.

Р














З адача 5. Автомобиль массой 2 тонны проходит по выпуклому мосту, имеющему радиус кривизны 40 м. ср скоростью 36 км /час. С какой силой автомобиль давит на мост в его середине.? С какой скоростью должен двигаться автомобиль, чтобы в середине моста водитель оказался в состоянии невесомости?

Решение: Ny+ mgy = may. Ny = -N, mgy = mg, ay = v2/R, Py = - Ny


Задача 7. С какой минимальной скоростью может двигаться мотоциклист под куполом цирка по траектории, радиус которой 160 м.


(для самостоятельного решения)



Формулы динамики

Законы Ньютона



1


2



3


Силы природы



- равнодействующая сила

- ньютоновская сила


Fm =mg - сила тяжести, g = G M /R2 – ускорение свободного падения

Fтр = μ N - сила трения

Fупр= - kx - сила упругости

Fтр = β υ - сила трения в жидкостях и газах при малых скоростях

Fтр = β υ 2 - сила трения в жидкостях и газах при больших скоростях F = G M m/R2 – сила всемирного тяготения

v2= G M m/R - 1-я косм. скорость. Около поверхности Земли v2= R g


P = m(g a) - вес тела

F = ρgV сила Архимеда.

m = – масса тела.


F1x + F2x + F3x +… = 0, F1y + F2y + F3y +… = 0 – условие равновесия тела.

M = Fd – момент силы. M 0, если сила вращает тело по часовой стрелке. M


- условие равновесия тела, имеющего ось вращения

2

Динамика прямолинейного движения. Z. Rodchenko


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!