Просмотр содержимого документа
«Задания на олимпиаду. 8 класс»
Всероссийская олимпиада школьников по математике
2020-2021 учебный год (школьный этап)
Задание №1
Разложите на множители: x4+3x2+4 ( 7 баллов)
Задание №2
Даны три числа. Если каждое из них увеличить на 1, то их произведение тоже увеличится на 1. Если все исходные числа увеличить на 2, то их произведение тоже увеличится на 2. Найдите эти числа. (7 баллов)
Задание №3
Саша, Лёша и Коля одновременно стартовали в забеге на 100 м. Когда Саша финишировал, Лёша находился в десяти метрах позади него, а когда финишировал Лёша — Коля находился позади него в десяти метрах. На каком расстоянии друг от друга находились Саша и Коля, когда Саша финишировал? (Предполагается, что все мальчики бегут с постоянными, но, конечно, не равными скоростями.) (7 баллов)
Задание №4
Один из углов треугольника на 120° больше другого. Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведенная из той же вершины. (7 баллов)
Задание №5
Каждый из 10 гномов либо всегда говорит правду, либо всегда лжет. Известно, что каждый из них любит ровно один сорт мороженого: сливочное, шоколадное или фруктовое. Сначала Белоснежка попросила поднять руки тех, кто любит сливочное мороженое, и все подняли руки, потом тех, кто любит шоколадное мороженое – и половина гномов подняли руки, потом тех, кто любит фруктовое мороженое – и руку поднял только один гном. Сколько среди гномов правдивых?
(7 баллов)