Эта заметка посвящена разбору школьной задачи про максимум суммы двух квадратов и анализу причин, по которым её решение иногда длится часами. Если вы ещё не брались за эту задачку для 8-классников, то настоятельно рекомендую до чтения этого поста её порешать.
Неправильное решение этой задачи, приводящее к опубликованному неправильному ответу очень короткое (и наверняка вы сейчас узнаете эти строки):
x2+y2=(x+y)2-2xy=(a-1)2-2(a2-7a+14)=-a2+12a-27 - парабола ветвями вниз.
Значит, максимум функции находится в точке a=6. И получив этот ответ, мы приходим в состояние, когда непонятно, что же делать дальше (я получил массу отзывов вроде "если 6 - не решение, то курица - рыба" и даже ещё разнообразнее). Однако 6 не удовлетворяет условию задачи, а это особенно выводит из себя, потому что понять причину иногда крайне трудно. Ведь всё сделали правильно, преобразования элементарные, ошибки нигде нету. И только когда в очередной раз перечитываем условие ("Действительные числа x, y, a таковы."), замечаем слово "действительные". На самом видном месте :) Но 6 - действительное число. Проверяем x и y - и вот оно! Не существует действительных корней x и y при a=6. Мы были так увлечены поиском максимума суммы квадратов, что найдя его, забыли проверить существование самих x и y.
Дальше всё просто:
Находим область определения: подставим y=a-1-x во второе равенство и получим
x(a-1-x)=a2-7a+14. А значит, -x2+(a-1)x+(-a2+7a-14)=0. Это - квадратное уравнение.
Для существования его действительных решений необходима и достаточна неотрицательность дискриминанта: D=(a-1)2 + 4(-a2+7a-14) >=0, то есть -3a2+26a-55 >= 0.
Корни соответствующего квадратного уравнения 11/3 и 5, а ветви параболы направлены вниз, значит, нам подходят только a с отрезка [11/3, 5]. Поскольку на этом отрезке сумма квадратов x и y возрастает (мы уже знаем, что x2+y2=-a2+12a-27), то правильным ответом на эту задачу будет a=5.
Эта задача взята из вступительного варианта 1968-го года на физический факультет Ленинградского государственного университета (хотя, может, она ещё где-нибудь раньше появлялась). По решению ясно видно, что по силам она любому, умеющему решать квадратные уравнения и способному вспомнить вопрос, когда только что легко нашёл ответ.
Смысл этого упражнения с числами был вот в чём: когда мы что-то сами придумали, сообразили, посчитали, почувствовали или даже начали делать, то мы всеми силами стараемся убедить себя в своей же правоте (чужое решение мы бы рассматривали более критично, но своё, чисто подсознательно, нам кажется правильным и родным). Мы так устроены. И заставить себя сомневаться в своих рассуждениях очень трудно. Вы ощутили ломку, когда решали эту задачу? Была мысль, что 6 - правильный ответ, а я по ошибке написал обратное?
Я не говорю, что надо всегда и во всём сомневаться. Идея в том, что когда глаза горят, когда кажется, что вот-вот всё сделаешь, вот-вот всё получится, то полезно услышать скептический вопрос соседа "а точно все три числа действительные?" А вершина мастерства - задать этот вопрос вовремя самому себе.
Имеет ли это отношение к жизни? Да, имеет. Когда вы подписываете договор, то кажется, что все пункты понятны и логичны, что вы защищены со всех сторон, а подводных камней нет. Но глаза открываются только при возникновении сложностей. А должны бы открываться до подписания.
Если кто-то вам с горящими глазами доказывает свою правоту, говорит, что абсолютно уверен, что всё чисто продумал, предложите ему эту задачу. Просто чтобы убедиться, что ваш собеседник умеет проверять себя.