СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Хорошего вам дня! И удовольствия от размышлений!

Нажмите, чтобы узнать подробности

Массаж головы и уравнения третьей степени

Многие люди знакомы с приятным ощущением в мышцах после спортивных нагрузок - организм радуется правильному физическому утомлению. Но сегодня речь пойдёт об аналогичном воздействии на мозг: если подумать о чём-то сложном и интересном, то можно получить массу удовольствия. Тонкость здесь в том, что задача должна быть именно увлекательной и сопротивляющейся, а не тупой и рутинной. Например, недавно меня спросили: А почему в школьной программе нет изучения уравнений третьей степени? Они же почти такие же простые, как и квадратные уравнения, просто на один корень больше. Что здесь можно ответить? Ответ будет ниже, а пока я покажу упражнение, которое полезно выполнить любому, кто задаётся таким же вопросом. А после упражнения будет пара важных мыслей. Сконструируйте кубическое уравнение, у которого корнями являются числа 1, 2 и 3. Сделать это легко: (x-1)(x-2)(x-3)=0. Теперь давайте раскроем скобки, чтобы получить канонический вид уравнения третьей степени Получаем: x3 - 6x2 + 11x - 6 = 0. Другими словами, коэффициенты кубического уравнения следующие: a=1, b=-6, c=11, d=-6. Всё просто, как и в статье о квадратных уравнениях :) Продолжаем движение. Как найти корни кубического уравнения, зная его коэффициенты? Можно вычислить дискриминант: Посчитали? (сколько минут это заняло?) Это число позволяет нам выяснить, сколько же корней у этого простого уравнения (оказывается, у него три действительных корня). Заметьте, что нам очень повезло - все коэффициенты являются целыми числами, поэтому считать дискриминант было очень приятно. Что делать дальше? Давайте искать корни. Формула очень простая: Любому нормальному человеку не хочется подставлять в эти формулы даже целые числа, потому что придётся исписать немало бумаги. А представьте, что было бы, если бы у нас коэффициенты были иррациональными числами! Метод решения «в лоб» не вдохновляет (заметьте, что по крайней мере с простыми квадратными уравнениями таких проблем нет). Давайте тогда попробуем применить метод Кардано: Можно сделать замену , чтобы избавиться от коэффициента b (перед квадратом). Предлагаю проделать это. Впрочем, это не обязательно - можно сразу пройти по ссылке на страницу, где автоматически формируется решение этим методом: посмотреть решение по формуле Кардано (нужные коэффициенты я уже вбил). Нравится такое решение? И это для простейшего уравнения, у которого корни 1, 2 и 3. Заметьте, что оно ещё достаточно короткое для такой задачи. Проблема в том, что сколько-нибудь сложное кубическое уравнение «решать человеком» очень неэффективно. Если квадратные уравнения проявляются в очень большом количестве задачек, то кубические нужны не так уж часто. А учитывая, как тяжело даётся их решение на бумаге (и очень высока вероятность арифметической ошибки, потому что проводится масса бессмысленных действий), крайне тяжело обосновать их плотное использование в школе. Кстати, обычно если составитель задачи никак не может избавиться от необходимости решения кубического уравнения, то он так корректирует условие, чтобы корень был простой: 1, -1 или какой-то такой. Тогда школьник может легко поделить полином третьей степени на (x-x0), где x0 - угаданный корень, чтобы получить нулевой остаток и квадратное уравнение, которое уже совсем легко решить. Поэтому, полагаю, Вы согласитесь со следующим моим ответом на подобные вопросы: 1. Есть не так много задач, в рамках которых возникают кубические уравнения; 2. Даже очень простое уравнение третьей степени (у которого не получается угадать один корень) требует много времени и сил, отвлекая ученика от настоящей работы мозга; 3. Поэтому нецелесообразно тратить время детей на рутинную работу, а лучше направить их силы на освоение сложных и интересных математических проблем. Знать об уравнениях третьей степени очень даже полезно, но вот регулярно их решать руками - явный перебор. А сейчас будет важная мысль. Вот я показал вам эти формулы, но разве это было очень познавательно? Скорее нет, чем да. Но легко понять, что проблема не в кубических уравнениях, а в том, как я их только что подал. Недавно мы говорили о пяти уровнях обучения. Только что был пятый - я скучно дал формулы, не сообщив ничего важного об интереснейшей теме - о кубических уравнениях. Но ведь Кардано, который придумал эту остроумную замену (или кто-то до него) получил массу удовольствия. И это был отличный массаж мозга! Тысячи школьников и студентов, которым их учитель аккуратно подсказал, чтобы они почти сами сообразили, как можно справиться с достаточно сложным классом уравнений - они тоже получили массу удовольствия и пользы для развития своего мозга. Вроде бы те же уравнения, а какая большая разница! Поэтому я не призываю отказываться от уравнений третьей степени, но прошу не вдалбливать формулы в бедные детские головы. Пользы от знания подобных формул в тысячи раз меньше, чем от их (почти) самостоятельного вывода. Поэтому гораздо лучше осилить вывод более простых формул, чем выучить эти. А как же массировать ребёнку мозг? Всё зависит от его возраста. Меня, например, примерно в возрасте шестиклассника очень впечатлил тот факт, что бывают числа, не представимые в виде отношения двух целых чисел. Само число «корень из двух» я себе представлял, но осознать, что оно не является рациональным - это было круто! Потом ещё помню, как удивительно было осознать, что натуральных чисел ровно столько же, сколько рациональных (тогда я не знал о мощностях множеств, поэтому позволяю себе такие нестрогие формулировки). Как же так? Вроде бы между двумя подряд идущими натуральными числами есть бесконечно много рациональных. Но это, оказывается, не аргумент. Понять такое - это для школьника очень круто! Ещё интереснее было потом понять, что вещественных чисел не просто бесконечно много, но гораздо больше чем натуральных. Это уже ни в какие ворота не лезло: я вроде бы понимал, что и натуральных, и вещественных чисел бесконечно много. Но как одних может быть больше, чем других? Или вот ещё вопросик: а бывает ли множество, в котором элементов больше, чем во множестве натуральных чисел, но меньше, чем во множестве вещественных? Есть масса интересных свойств, которые может (почти) самостоятельно понять человек с любым уровнем подготовки, если у него есть желание (другими словами, если он уже ощущал кайф от процесса познания). Хорошего вам дня! И удовольствия от размышлений!

http://my-tribune.blogspot.ru/2010/03/blog-post_14.html

12.11.2017 09:08


Рекомендуем курсы ПК и ПП