СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

ЕГЭ 2025. Апрель Информатика Вариант 14

Категория: Информатика

Нажмите, чтобы узнать подробности

1.  Тип 1 № 51970

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что дорога АБ длиннее дороги БД. Определите длину дороги ГЖ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  П1 П2 П3 П4 П5 П6 П7 П8
П1         29 36    
П2     17 18     20 23
П3   17   31     34  
П4   18 31          
П5 29         24   19
П6 36       24   16 21
П7   20 34     16   33
П8   23     19 21 33  

 

 

 

 

2.  Тип 2 № 33747

Логическая функция F задаётся выражением (¬(zw) → (w ∧ ¬x)) ∨ (x ∧ ¬y). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

 

 

 

 

 

Переменная 1 Переменная 2 Переменная 3 Переменная 4 Функция
0   0 0 0
0     0 0
0       0

 

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала  — буква, соответствующая первому столбцу; затем  — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение xy, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

 

 

 

Переменная 1 Переменная 2 Функция
??? ??? F
0 1 0

 

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

3.  Тип 3 № 37415

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

 

3.xlsx

 

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

 

ID операции Дата ID магазина Артикул Тип операции Количество упаковок,шт. Цена,руб./⁠шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

 

Артикул Отдел Наименование Ед. изм. Количествов упаковке Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

 

ID магазина Район Адрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, на сколько увеличилось количество упаковок яиц диетических, имеющихся в наличии в магазинах Заречного района за период с 1 по 10 июня.

В ответе запишите только число.

4.  Тип 4 № 10499

Для кодирования некоторой последовательности, состоящей из букв А, Б, В и Г, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приёмной стороне канала связи. Для букв А, Б, В используются такие кодовые слова: А  — 010, Б  — 1, В  — 011.

Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

5.  Тип 5 № 18582

Автомат обрабатывает натуральное число N по следующему алгоритму:

1.  Строится двоичная запись числа N без ведущих нулей.

2.  Если в полученной записи единиц больше, чем нулей, то справа приписывается единица. Если нулей больше или нулей и единиц поровну, справа приписывается ноль.

3.  Полученное число переводится в десятичную запись и выводится на экран.

 

Пример. Дано число N  =  13. Алгоритм работает следующим образом.

1.  Двоичная запись числа N: 1101.

2.  В записи больше единиц, справа приписывается единица: 11011.

3.  На экран выводится десятичное значение полученного числа 27.

 

Какое наименьшее число, превышающее 100, может получиться в результате работы автомата?

6.  Тип 6 № 56534

Исполнитель Черепаха передвигается по плоскости и оставляет след в виде линии. Черепаха может выполнять три команды: Вперёд n (n  — число), Направо m (m  — число) и Налево m (m  — число). По команде Вперёд n Черепаха перемещается вперёд на n единиц. По команде Направо m Черепаха поворачивается на месте на m градусов по часовой стрелке, при этом соответственно меняется направление дальнейшего движения. По команде Налево m Черепаха поворачивается на месте на m градусов против часовой стрелки, при этом соответственно меняется направление дальнейшего движения.

В начальный момент Черепаха находится в начале координат и направлена вверх (вдоль положительного направления оси ординат).

Запись Повтори k [Команда1 Команда2КомандаS] означает, что заданная последовательность из S команд повторится k раз.

Черепаха выполнила следующую программу (x в тексте программы  — некоторое натуральное число):

 

Повтори 3 [Вперёд 7 Направо 90]

Вперёд 8

Повтори 3 [Налево 90 Вперёд 5].

Определите, сколько различных точек с целочисленными координатами будет находиться на линиях, полученных при выполнении данной программы.

7.  Тип 7 № 15849

Автоматическая камера производит растровые изображения размером 600 на 1000 пикселей. Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Объём файла с изображением не может превышать 250 Кбайт без учёта размера заголовка файла. Какое максимальное количество цветов можно использовать в палитре?

8.  Тип 8 № 13594

Алексей составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Алексей использует 5-⁠буквенные слова, в которых есть только буквы A, B, C, X, причём буква X может появиться только на последнем месте или не появиться вовсе. Сколько различных кодовых слов может использовать Алексей?

9.  Тип 9 № 46967

В каждой строке электронной таблицы записаны четыре натуральных числа. Определите, сколько в таблице таких четвёрок, из которых можно выбрать три числа, которые не могут быть сторонами никакого треугольника, в том числе вырожденного (вырожденным называется треугольник, у которого сумма длин двух сторон равна длине третьей стороны).

 

Задание 9

 

10.  Тип 10 № 69888

C помощью текстового редактора определите, сколько раз встречается сочетание букв «рук» или «Рук» в тексте глав IV, V, VI и VII второй части тома 2 романа Л. Н. Толстого «Война и мир». В ответе укажите только число.

 

Задание 10

 

11.  Тип 11 № 11114

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 9 символов и содержащий только символы из 26-⁠символьного набора прописных латинских букв. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей.

Для хранения сведений о 20 пользователях потребовалось 400 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число  — количество байт.

12.  Тип 12 № 15799

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

 

Цикл

ПОКА условие

    последовательность команд

КОНЕЦ ПОКА

выполняется, пока условие истинно.

 

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 100 единиц?

НАЧАЛО

    ПОКА нашлось (111)

        заменить (11, 2)

        заменить (22, 1)

    КОНЕЦ ПОКА

КОНЕЦ

13.  Тип 13 № 14698

В терминологии сетей TCP/⁠IP маской сети называется двоичное число, определяющее, какая часть IP-⁠адреса узла сети относится к адресу сети, а какая  — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места  — нули.

Обычно маска записывается по тем же правилам, что и IP-⁠адрес,  — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-⁠адресу узла и маске.

Например, если IP-⁠адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Для узла с IP-⁠адресом 93.138.161.94 адрес сети равен 93.138.160.0. Какое наибольшее количество нулей может быть в двоичной записи маски?

14.  Тип 14 № 18822

Значение выражения 498 + 724 − 7? записали в системе счисления с основанием 7.

Сколько нулей в этой записи?

15.  Тип 15 № 27303

Для какого наименьшего целого неотрицательного числа А выражение

 

(4x + 3y < A) ∨ (xy) ∨ (y13)

 

тождественно истинно, то есть принимает значение 1 при любых целых неотрицательных x и y?

16.  Тип 16 № 4849

Алгоритм вычисления значения функции F(n), где n  — натуральное число, задан следующими соотношениями:

F(1)  =  1;

F(2)  =  1;

F(n)  =  F(n – 2) · n при n > 2.

 

Чему равно значение функции F(7)? В ответе запишите только натуральное число.

17.  Тип 17 № 59695

В файле содержится последовательность натуральных чисел.

 

Задание 17

 

Элементы последовательности могут принимать целые значения от 1 до 100 000 включительно. Определите количество троек последовательности, в которых только одно из чисел является четырёхзначным, a сумма элементов тройки нe меньше максимального элемента последовательности, оканчивающегося на 15. В ответе запишите количество найденных троек, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

 

Ответ:

18.  Тип 18 № 59696

Квадрат разлинован на N х N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз  — в соседнюю нижнюю. Квадрат ограничен внешними стенами.

Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может.

Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота.

В «угловых» клетках поля  — тех, которые справа и снизу ограничены стенами, Робот He может продолжать движение, поэтому накопленная сумма считается итоговой. Таких конечных клеток на поле может быть несколько, включая правую нижнюю клетку поля.

При разных запусках итоговые накопленные суммы могут различаться.

Определите максимальную и минимальную денежные суммы, среди всех возможных итоговых сумм, которые может собрать Робот, пройдя из левой верхней клетки в конечную клетку маршрута.

 

Задание 18

 

В ответе укажите два числа  — сначала минимальную сумму, затем максимальную. Исходные данные представляют собой электронную таблицу размером N х N, каждая ячейка которой соответствует клетке квадрата. Внутренние и внешние стены обозначены утолщёнными линиями.

 

Ответ:

19.  Тип 19 № 28083

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень либо увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 26.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 26 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 25.

Будем говорить, что игрок имеет выигрышную стратегию, если он может

выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

20.  Тип 20 № 28084

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень либо увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 26.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 26 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 25.

Будем говорить, что игрок имеет выигрышную стратегию, если он может

выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—  Петя не может выиграть за один ход;

—  Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21.  Тип 21 № 28085

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень либо увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 26.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 26 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 25.

Будем говорить, что игрок имеет выигрышную стратегию, если он может

выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

—  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22.  Тип 22 № 47590

В файле 22_9.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы  — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

 

ID процесса B Время выполнения процесса B (мс) ID процесса(ов) A
1

 

4 0
2 3 0
3 1 1;2
4 7 3

 

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2  — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1  =  5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7  =  12 мс.

23.  Тип 23 № 55640

Исполнитель преобразует число на экране.

У исполнителя есть четыре команды, которым присвоены номера.

1.  Прибавить 1.

2.  Прибавить 2.

3.  Умножить на 2.

4.  Умножить на 3.

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 2, третья умножает на 2, четвёртая умножает на 3.

Программа для исполнителя  — это последовательность команд. Например, если в начальный момент на экране находится число 1, то программа 213 последовательно преобразует его в 3, 4, 8.

Сколько существует программ, которые преобразуют исходное число 1 в число 24 и при этом не содержат двух последовательных команд сложения и двух последовательных команд умножения?

24.  Тип 24 № 59729

Текстовый файл состоит из символов, обозначающих заглавные буквы латинского алфавита. Определите минимальное количество идущих подряд символов, среди которых пара символов T встречается ровно 150 раз.

Пример. В строке TTTT пара символов встречается ровно 3 раза.

 

Задание 24

 

25.  Тип 25 № 69933

 

Пусть M  — сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей у числа нет, то значение M считается равным нулю.

Напишите программу, которая перебирает целые числа, бо́льшие 700 000, в порядке возрастания и ищет среди них такие, для которых значение M оканчивается на 4. Выведите первые пять найденных чисел и соответствующие им значения M.

Формат вывода: для каждого из пяти таких найденных чисел в отдельной строке сначала выводится само число, затем  — значение М.

Строки выводятся в порядке возрастания найденных чисел.

Количество строк в таблице для ответа избыточно.

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

26.  Тип 26 № 70553

Во время сессии студенты сдают 4 экзамена, за каждый из которых можно получить от 2 до 5 баллов. Студенты, получившие хотя бы одну «двойку», считаются не сдавшими сессию. Результаты сессии публикуются в виде рейтингового списка, в котором сначала указаны идентификационные номера студентов (ID), сдавших сессию, в порядке убывания среднего балла за сессию, а в случае равенства средних баллов – в порядке возрастания ID.

Затем располагаются ID студентов, не сдавших сессию: сначала  — получивших одну «двойку», затем  — две «двойки», потом ID студентов с тремя «двойками» и, наконец, ID студентов, получивших по 2 балла за каждый из экзаменов. Если студенты имеют одинаковое количество «двоек», то их ID в рейтинге располагаются в порядке возрастания.

Повышенную стипендию получают студенты, занявшие в рейтинговом списке первые 25% мест, при условии отсутствия у них «двоек».

Гарантируется, что без «двоек» сессию сдали не менее 25% студентов.

Найдите ID студента, который занимает последнее место среди студентов с повышенной стипендией, а также ID первого в рейтинговом списке студента, который имеет более двух «двоек».

В ответе запишите два целых положительных числа: сначала ID студента, который занимает последнее место среди студентов с повышенной стипендией, затем ID первого в рейтинговом списке студента, который имеет более двух «двоек».

Входные данные.

 

Задание 26

 

В первой строке входного файла находится число N, обозначающее количество студентов (целое положительное число, не превышающее 10 000). Каждая из следующих N строк содержит 5 чисел через пробел: ID студента (целое положительное число, не превышающее 100 000) и четыре оценки, полученные им за сессию. Гарантируется, что общее число студентов N кратно 4 и хотя бы один студент имеет более двух «двоек».

Во входном файле все ID различны.

Выходные данные.

Два натуральных числа: искомые ID студентов в порядке, указанном в условии задачи.

Типовой пример организации данных во входном файле:

8

4 4 4 4 4

7 5 5 5 2

10 3 4 4 5

1 4 4 4 3

6 3 5 5 3

2 2 2 2 2

13 2 2 2 3

3 3 3 3 3

При таких исходных данных рейтинговый список ID имеет вид: 4 6 10 1 3 7 13 2. Ответ: 6 13.

 

Ответ:

 

27.  Тип 27 № 59825

Дана последовательность целых чисел. Расстояние между элементами последовательности  — это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними

равно 1, если два элемента стоят через один  — расстояние равно 2 и так далее.

Необходимо выбрать из последовательности три числа так, чтобы максимальное расстояние между выбранными числами было не меньше K, а их сумма была максимально возможной.

В ответе запишите найденную сумму

Входные данные.

 

Файл А

Файл В

 

Первая строка входного файла содержит целое число K  — параметр для определения расстояния, вторая строка содержит число N  — общее количество чисел в наборе (1 < 2K < N). Каждая из следующих N строк содержит одно число, не превышающее по модулю 107.

Пример входного файла:

2

6

6

7

8

2

3

5

Из этого файла в соответствии с условиями можно выбрать числа 7, 8 и 5. Максимальное расстояние в данном случае равно 4 (между числами 7 и 5). Числа 6, 7 и 8 взять нельзя, так как максимальное расстояние в этом случае равно 2, а по условию оно должно быть не меньше 4. В ответе для этого примера надо написать число 20.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала требуемую сумму для файла A, затем  — для файла B.

 

Ответ: