СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по математике в 6 классе по учебнику Виленкина

Категория: Математика

Нажмите, чтобы узнать подробности

Рабочая программа составлена в соответствии с ФГОС.

Просмотр содержимого документа
«Рабочая программа по математике в 6 классе по учебнику Виленкина»

Муниципальное общеобразовательное учреждение

Юрьевская средняя общеобразовательная школа





Утверждена

Приказ по школе №__________

от _________2015г Директор:__________________

/Пестерева В.Ф./






Рабочая программа

по математике

для 6 класса






Составитель: Блохина Татьяна Валентиновна,

учитель математики

1 квалификационной категории












2015/2016 уч. г.

  1. Пояснительная записка


Рабочая программа по математике составлена на основе следующих нормативных документов и методических материалов:

  1. Фундаментальное ядро содержания общего образования / под. ред. В.В. Козлова, А.М. Кондакова. – 2-е изд. – М.: Просвещение, 2010. – 59 с. – (Стандарты второго поколения).

  2. Федеральный государственный образовательный стандарт основного общего образования / М-во образования и науки Рос. Федерации. – М.: Просвещение, 2011. – 48 с. – (Стандарты второго поколения).

  3. Примерная основная образовательная программа образовательного учреждения. Основная школа / Сост. Е.С. Савинов. – М.: Просвещение, 2011. –342 с. – (Стандарты второго поколения).

  4. Примерные программы по учебным предметам. Математика. 5-9 классы: проект. – 3-е изд., перераб. – М.: Просвещение, 2011. – 64 с. – (Стандарты второго поколения).

  5. С учётом методических рекомендаций к авторским программам. Математика. Сборник рабочих программ. 5-6 классы: пособие для учителей общеобразоват. учреждений / сост. Т.А. Бурмистрова. – 2-е изд., доп. – М.: Просвещение, 2012. – 80 с.

  6. Методических писем о преподавании учебного предмета «Математика» в общеобразовательных учреждениях Ярославской области в 2014/15; 2015/16 уч.г.

Согласно пункту 18.2.2 ФГОС программа включает следующие разделы: пояснительная записка; общая характеристика учебного предмета; место предмета в учебном плане; личностные, метапредметные и предметные результаты освоения учебного предмета; содержание учебного предмета; тематическое планирование с определением основных видов учебной деятельности (совмещенный вариант с поурочным планированием); описание учебно-методического и материально-технического обеспечения образовательного процесса; планируемые результаты изучения учебного предмета.

Учебный предмет «математика» входит в предметную область «Математика и информатика».

Обучение математике является важнейшим звеном основного общего образования. Она служит не только формированию конкретных предметных результатов, необходимых для дальнейшего освоения систематического курса математики и для освоения смежных дисциплин. Математика призвана обеспечивать формирование научного мировоззрения, развитие логического мышления, эмоционально-волевой сферы, навыков умственного труда, важнейших качеств личности, таких как самостоятельность, аккуратность, точность, настойчивость и т.д. Математика имеет широкие возможности для обучения регуляции, управления собственной деятельностью. Она развивает не только общую культуру, эстетические способности, но и речь обучающихся.

Все сказанное конкретизируется в следующих целях обучения математике на ступени основного общего образования:

  1. в направлении личностного развития

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

  • формирование способов деятельности, связанных с ее управлением (постановка целей, разработка плана, контроль, коррекция и т.п.);

  • формирование коммуникативных действий;

3) в предметном направлении

  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Педагогическими подходами, используемыми для достижения обозначенных целей, являются системно-деятельностный и личностно-ориентированный. В качестве основных педагогических средств используются проблемно-диалогическая технология Е.Л. Мельниковой, проектная технология, технология уровневой дифференциации. Методы обучения выбираются, исходя из задачи активизации учебной деятельности обучающихся. Основным методом является частично-поисковый. Наиболее часто используемыми формами организации познавательной деятельности обучающихся выступают индивидуальная и групповая.

Для организации процесса обучения математике в начале пятого класса проводится входная контрольная работа. Для контроля предметных результатов используются тематические, промежуточные контрольные работы и зачеты. Для оперативного контроля используются самостоятельные работы, опросы. Итоговая аттестация по математике в девятом классе проводится в виде Государственной итоговой аттестации. Для контроля метапредметных образовательных результатов используются самооценочные методики, экспертная оценка.


  1. Общая характеристика учебного предмета


Содержание математического на ступени основного общего образования представлено в виде следующих содержательных разделов. Это арифметика; алгебра; функции; вероятность и статистика; геометрия; логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» – обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» – развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

  1. Место предмета в учебном плане


Класс

Предмет
математического цикла

Количество часов

5-6

Математика

5

7-9

Алгебра

3

Геометрия

2



  1. Личностные, метапредметные, предметные результаты
    освоения учебного предмета

Изучение математики в 5-9 классе позволяет достичь следующих результатов

в личностном направлении:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

в предметном направлении:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;

6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне – о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

  1. Содержание учебного предмета

Арифметика

Натуральные числа. Натуральный ряд. Десятичная система счисления. Римская нумерация. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Проценты; нахождение процентов от величины и величины по её процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рациональных чисел; рациональное число как отношение m/n, где т – целое число, а n – натуральное. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.

Действительные числа. Квадратный корень из числа. Корень третьей степени.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя – степени десяти в записи числа.

Приближённое значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

Алгебра

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

Функции

Функции. Примеры зависимостей; прямая пропорциональность; обратная пропорциональность. Задание зависимостей формулами; вычисления по формулам. Зависимости между величинами. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Понятие функции, область применения и область значения функции. Способы задания функции. График функции. Свойства функции, их отражение на графике. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций

Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

Вероятность и статистика

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

Геометрия

Наглядная геометрия. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырёхугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Изображение геометрических фигур и их конфигураций.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Биссектриса угла.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближённое измерение площади фигур на клетчатой бумаге. Равновеликие фигуры. Разрезание и составление геометрических фигур.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса. Изготовление моделей пространственных фигур.

Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°, приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.

Четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число π, длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

Логика и множества

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера—Венна.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление логических связок если..., то, в том и только в том случае, логические связки и, или.

Математика в историческом развитии.

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма. Ф. Виет. Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель. Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построения с помощью циркуля и линейки. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата. Софизм, парадоксы.


  1. Тематическое планирование

Название темы

К-во

Часов

Контрольных

работ

1

Делимость чисел

20

1

2

Сложение и вычитание дробей с разными знаменателями

22

3

3

Умножение и деление обыкновенных дробей

32

3

4

Отношения и пропорции

19

2

5

Положительные и отрицательные числа

13

1

6

Сложение и вычитание положительных и отрицательных чисел

11

1

7

Умножение и деление положительных и отрицательных чисел

12

1

8

Решение уравнений

15

2

9

Координаты на плоскости

13

1

10

Повторение

13

1


Итого

170

16


  1. Поурочное планирование

  2. Описание учебно-методического и материально-технического
    обеспечения образовательного процесса


        1. Используемый УМК

Учебники Н.Я. Виленкина, В.И. Жохова, А.С. Чеснокова, С.И. Шварцбурда. Математика 5-6.

Учебники Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой. Алгебра 7-9.

Учебники Л.С. Атанасяна и др. Геометрия 7-9.

Дидактические материалы, входящие в состав УМК.

        1. Библиотечный фонд

Нормативные документы (ФГОС, примерная основная образовательная программа образовательного учреждения, примерная программа по математике 5-9 классы, фундаментальное ядро содержания общего образования, планируемые результаты освоения программы основного общего образования по математике).

Авторские программы по курсам математики.

Учебные пособия: рабочие тетради, дидактические материалы, сборники контрольных работ.

Пособия для подготовки к ГИА.

Учебные пособия по элективным курсам и внеурочной деятельности.

Научная, научно-популярная, историческая литература.

Справочные пособия.

Методические пособия для учителя.

        1. Печатные пособия

Таблицы по математике для 5-6 классов.

Таблицы по алгебре для 7-9 классов.

Таблицы по геометрии для 7-9 классов.

Портреты выдающихся деятелей математики.

        1. Информационные средства

Мультимедийные обучающие программы и электронные учебные издания по основным разделам математики.

Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.

Инструментальная среда по математике.

        1. Экранно-звуковые пособия

Видеофильмы по истории математики, математических идей и методов.

        1. Технические средства обучения

Мультимедийный компьютер.

Мультимедиа проектор.

Экран.

Интерактивная доска.

        1. Учебно-практическое и учебно-лабораторное оборудование

Доска магнитная с координатной сеткой.

Комплект чертежных инструментов (классных и раздаточных).

Комплект планиметрических и стереометрических тел (демонстрационных и раздаточных).

Комплекты для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).




  1. Планируемые результаты изучения учебного предмета
    в 6 классе


Личностные результаты

Личностные универсальные учебные действия

Будут сформированы:

  • широкая мотивационная основа учебной деятельности, включающая социальные, учебно-познавательные и внешние мотивы;

  • учебно-познавательный интерес к новому учебному материалу и способам решения новой задачи;

  • ориентация на понимание причин успеха в учебной деятельности, в том числе на самоанализ и самоконтроль результата, на анализ соответствия результатов требованиям конкретной задачи, на понимание предложений и оценок учителей, товарищей, родителей и других людей;

Ученик получит возможность для формирования:

  • внутренней позиции обучающегося на уровне положительного отношения к образовательному учреждению, понимания необходимости учения, выраженного в преобладании учебно-познавательных мотивов и предпочтении социального способа оценки знаний;

  • выраженной устойчивой учебно-познавательной мотивации учения;

  • устойчивого учебно-познавательного интереса к новым общим способам решения задач;

  • адекватного понимания причин успешности/неуспешности учебной деятельности;


Метапредметные образовательные результаты

Регулятивные универсальные учебные действия

Ученик научится:

  • принимать и сохранять учебную задачу;

  • учитывать выделенные учителем ориентиры действия в новом учебном материале в сотрудничестве с учителем;

  • планировать свои действия в соответствии с поставленной задачей и условиями её реализации, в том числе во внутреннем плане;

  • учитывать установленные правила в планировании и контроле способа решения;

  • осуществлять итоговый и пошаговый контроль по результату;

  • оценивать правильность выполнения действия  в соответствии с  требованиями  данной задачи и задачной области;

  • адекватно воспринимать предложения и оценку учителей, товарищей, родителей и других людей;

  • различать способ и результат действия;

  • вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок, использовать предложения и оценки для создания нового, более совершенного результата, использовать запись (фиксацию) в цифровой форме хода и результатов решения задачи;


Ученик получит возможность научиться:

  • в сотрудничестве с учителем ставить новые учебные задачи;

  • преобразовывать практическую задачу в познавательную;

  • проявлять познавательную инициативу в учебном сотрудничестве;

  • самостоятельно учитывать выделенные учителем ориентиры действия в новом учебном материале;

  • осуществлять констатирующий и предвосхищающий контроль по результату и по способу действия, актуальный контроль на уровне произвольного внимания;

  • самостоятельно адекватно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как по ходу его реализации, так и в конце действия.


Коммуникативные универсальные учебные действия

Ученик научится:

  • адекватно использовать коммуникативные, прежде всего речевые, средства для решения различных коммуникативных задач, строить монологическое высказывание, владеть диалогической формой коммуникации, используя в том числе средства и инструменты ИКТ и дистанционного общения;

  • допускать возможность существования у людей различных точек зрения, в том числе не совпадающих с его собственной, и ориентироваться на позицию партнёра в общении и взаимодействии;

  • учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;

  • формулировать собственное мнение и позицию;

  • строить понятные для партнёра высказывания, учитывающие, что партнёр знает и видит, а что нет;

  • задавать вопросы;

  • контролировать действия партнёра;

Ученик получит возможность научиться:

  • учитывать и координировать в сотрудничестве позиции других людей, отличные от собственной;

  • учитывать разные мнения и интересы и обосновывать собственную позицию;

  • понимать относительность мнений и подходов к решению проблемы;

  • аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности;

  • продуктивно содействовать разрешению конфликтов на основе учёта интересов и позиций всех участников;

  • задавать вопросы, необходимые для организации собственной деятельности и сотрудничества с партнёром;

  • осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь;

  • адекватно использовать речь для планирования и регуляции своей деятельности;

  •  адекватно использовать речевые средства для эффективного решения разнообразных коммуникативных задач.


Познавательные универсальные учебные действия

Ученик научится:

  • осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы, энциклопедий, справочников (включая электронные, цифровые);

  • осуществлять запись (фиксацию) выборочной информации;

  • использовать знаково-символические средства, в том числе модели и схемы для решения задач;

  • строить сообщения в устной и письменной форме;

  • ориентироваться на разнообразие способов решения задач;

  • основам смыслового восприятия  познавательных текстов, выделять существенную информацию из сообщений разных видов (в первую очередь текстов);

  • осуществлять анализ объектов с выделением существенных и несущественных признаков;

  • проводить сравнение и классификацию по заданным критериям;

  • устанавливать причинно-следственные связи в изучаемом круге явлений;

  • строить рассуждения в форме связи простых суждений об объекте, его строении, свойствах и связях;

  •  устанавливать аналогии;

  • владеть рядом общих приёмов решения задач.


Ученик получит возможность научиться:

  • осуществлять расширенный поиск информации с использованием ресурсов библиотек и сети Интернет;

  • записывать, фиксировать информацию об окружающем мире с помощью инструментов ИКТ;

  • создавать и преобразовывать модели и схемы для решения задач;

  • осознанно и произвольно строить сообщения в устной и письменной форме;

  • осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;

  • осуществлять синтез как составление целого из частей, самостоятельно достраивая и восполняя недостающие компоненты;

  • осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

  • строить логическое рассуждение, включающее установление причинно-следственных связей;

  • произвольно и осознанно владеть общими приёмами решения задач.


Предметные образовательные результаты

Арифметика

Ученик научится:

• выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, арифметические операции с обыкновенными дробями с однозначными числителем и знаменателем;

• выполнять арифметические действия с рациональными числами, находить значения числовых выражений (целых и дробных);

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• округлять целые числа и десятичные дроби, выполнять оценку числовых выражений;

• решать текстовые задачи, в том числе связанные с отношениями и с пропорциональностью величин, дробями и процентами.

Ученик получит возможность:

научиться решать несложные практические расчётные задачи с использованием при необходимости справочных материалов и калькулятора;

• углубить и развить представления о рациональных числах;

• научиться использовать приёмы, рационализирующие вычисления;

Алгебра

Ученик научится:

• осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

• определять координаты точки и изображать числами точки на координатной прямой;

Ученик получит возможность:

• решать несложные текстовые задачи алгебраическим методом;

составлять формулы и выражения зависимостей между реальными величинами, выполнять расчёты по ним;

Геометрия.

Ученик научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире линии, углы, многоугольники, треугольники, четырехугольники, многогранники;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность:

• вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

• углубить и развить представления о пространственных геометрических фигурах;

• применять понятие развёртки для выполнения практических расчётов.

Комбинаторика

Ученик научиться решать комбинаторные задачи с помощью перебора всех возможных вариантов, строить дерево возможных вариантов..

Описательная статистика

Ученик получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы