Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.
Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в коллекции 10 разных принцесс, и они равномерно распределены, то есть в каждом очередном Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши уже есть две разные принцессы из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придётся купить ещё 2 или 3 шоколадных яйца?
Трактор тащит сани с силой кН, направленной под острым углом к горизонту. Работа трактора (в килоджоулях) на участке длиной м вычисляется по формуле При каком максимальном угле (в градусах) совершeнная работа будет не менее 2000 кДж?
Васе надо решить 434 задачи. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 5 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 14 дней.
Дана правильная призма ABCA1B1C1, у которой сторона основания AB = 4, а боковое ребро AA1 = 9. Точка M — середина ребра AC, а на ребре AA1 взята точка T так, что AT = 5.
а) Докажите, что плоскость BB1M делит отрезок C1T пополам.
б) Плоскость BTC1 делит отрезок MB1 на две части. Найдите длину меньшей из них.
Строительство нового завода стоит 159 млн рублей. Затраты на производство х тыс. ед. продукции на таком заводе равны млн рублей в год. Если продукцию завода продать по цене р тыс. рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит Когда завод будет построен, фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. При этом в первый год p = 10, а далее каждый год возрастает на 1. За сколько лет окупится строительство?
На доске написано 100 различных натуральных чисел с суммой 5100.
а) Может ли быть записано число 250?
б) Можно ли обойтись без числа 11?
в) Какое наименьшее количество чисел, кратных 11, может быть на доске?
1, может быть на доске?
Просмотр содержимого документа
«ЕГЭ 2023 Январь Математика Вариант 15»
Тип 1 № 27827
Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.
2. Тип 2 № 25541
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
3. Тип 3 № 282857
Фабрика выпускает сумки. В среднем 8 сумок из 100 имеют скрытые дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов.
4. Тип 4 № 509078
Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в коллекции 10 разных принцесс, и они равномерно распределены, то есть в каждом очередном Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши уже есть две разные принцессы из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придётся купить ещё 2 или 3 шоколадных яйца?
5. Тип 5 № 501034
Найдите корень уравнения
6. Тип 6 № 26845
Найдите значение выражения
7. Тип 7 № 523369
На рисунке изображён график функции Найдите количество точек максимума функции принадлежащих интервалу (−4; 7).
8. Тип 8 № 28006
Трактор тащит сани с силой кН, направленной под острым углом к горизонту. Работа трактора (в килоджоулях) на участке длиной м вычисляется по формуле При каком максимальном угле (в градусах) совершeнная работа будет не менее 2000 кДж?
9. Тип 9 № 99581
Васе надо решить 434 задачи. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 5 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 14 дней.
10. Тип 10 № 508895
На рисунке изображён график функции Найдите
11. Тип 11 № 77475
Найдите наименьшее значение функции на отрезке
12. Тип 12 № 516760
а) Решите уравнение:
б) Определите, какие из его корней принадлежат отрезку
13. Тип 13 № 512998
Дана правильная призма ABCA1B1C1, у которой сторона основания AB = 4, а боковое ребро AA1 = 9. Точка M — середина ребра AC, а на ребре AA1 взята точка T так, что AT = 5.
а) Докажите, что плоскость BB1M делит отрезок C1T пополам.
б) Плоскость BTC1 делит отрезок MB1 на две части. Найдите длину меньшей из них.
14. Тип 14 № 508347
Решите неравенство:
15. Тип 15 № 525381
Строительство нового завода стоит 159 млн рублей. Затраты на производство х тыс. ед. продукции на таком заводе равны млн рублей в год. Если продукцию завода продать по цене р тыс. рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит Когда завод будет построен, фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. При этом в первый год p = 10, а далее каждый год возрастает на 1. За сколько лет окупится строительство?
16. Тип 16 № 517524
Дана равнобедренная трапеция, в которой AD = 3BC, CM — высота трапеции.
а) Доказать, что M делит AD в отношении 2 : 1.
б) Найдите расстояние от точки C до середины BD, если AD = 18, AC =
17. Тип 17 № 517432
Найдите все значения параметра а, при каждом из которых уравнение
имеет хотя бы одно решение.
18. Тип 18 № 517581
На доске написано 100 различных натуральных чисел с суммой 5100.
а) Может ли быть записано число 250?
б) Можно ли обойтись без числа 11?
в) Какое наименьшее количество чисел, кратных 11, может быть на доске?