На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).
П1
П2
П3
П4
П5
П6
П7
П8
П1
15
20
18
П2
15
25
П3
25
24
22
П4
20
12
П5
13
16
17
П6
24
13
15
П7
12
16
П8
18
22
17
15
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Г в пункт Е. В ответе запишите целое число.
Логическая функция F задаётся выражением (z ∧ y) ∨ ((x → z ) ≡ (y → w)).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.
Переменная 1
Переменная 2
Переменная 3
Переменная 4
Функция
???
???
???
???
F
1
0
1
1
0
1
1
1
0
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1
Переменная 1
Функция
???
???
F
0
1
0
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
Таблица «Движение товаров» содержит записи о поставках товаров в магазины города в первой декаде июня 2021 г. и о продаже товаров в этот же период. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит адреса магазинов.
На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.
Используя информацию из приведённой базы данных, определите, сколько килограммов сахара всех видов поступило за указанный период в магазины Заречного района.
Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К — кодовое слово 10. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:
Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом: Повтори 4 [Вперёд 12 Направо 90].
и находиться вне области, ограниченной линией, заданной данным алгоритмом: Повтори 3 [Вперёд 8 Направо 60 Вперёд 8 Направо 120]. Точки на линии учитывать не следует.
Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 128 × 128 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
В файле находится таблица, которая содержит в каждой из строк по 7 натуральных чисел. Ваша задача состоит в том, чтобы посчитать количество таких строк, в которых два числа повторяются по 2 раза, а три других различны, и среднее арифметическое неповторяющихся чисел больше среднего арифметического повторяющихся.
Определите, сколько раз в тексте произведения А. С. Пушкина «Капитанская дочка» встречается слово «капитанская» или «Капитанская». Другие формы этого слова («капитанскую», «капитанские» и т. д.) учитывать не надо.
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 23 символов и содержащий только символы A, F, G, Y, S, L (таким образом, используется 6 различных символов). Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 50 паролей. В ответе укажите только число, слово «байт» писать не нужно.
Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 77 единиц?
В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули. Обычно маска записывается по тем же правилам, что и IP-адрес, — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.
Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.
Для узла с IP-адресом 93.138.164.49 адрес сети равен 93.138.160.0. Для скольких различных значений маски это возможно?
Обозначим через mod(a, b) остаток от деления натурального числа a на натуральное число b. Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:
F(0) = 0;
F(n) = F(n / 3), если n > 0 и при этом mod(n, 3) = 0;
В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, у которых сумма нечётна, а произведение делится на 5, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.
Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы квадрата робот не может. При этом ведётся подсчёт суммы по следующим правилам: число в очередной клетке, через которую проходит робот, включается в сумму, если оно больше числа в предыдущей клетке на пути робота. Если число в очередной клетке не больше числа в предыдущей, сумма не изменяется. Число в начальной клетке всегда включается в сумму. Необходимо переместить робота в правый нижний угол так, чтобы полученная сумма была максимальной. В ответе запишите максимально возможную сумму.
Пример входных данных (для таблицы размером 4 × 4):
44
42
89
37
18
35
50
20
6
41
26
64
7
9
70
85
Для указанных входных данных оптимальным маршрутом будет путь по клеткам 44, 42, 89, 50, 26, 70, 85. Итоговая сумма равна 44 + 89 + 70 + 85 = 288. Числа 42, 50 и 26 не включаются в сумму, так как 42 < 44, 50 < 89 и 26 < 50.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество камней в куче в четыре раза. Например, пусть в одной куче 6 камней, а в другой — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (24, 9), (6, 10), (6, 36). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 61. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 61 или больше камней.
В начальный момент в первой куче было 3 камня, во второй куче — S камней, 1 ≤ S ≤ 57.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество камней в куче в четыре раза. Например, пусть в одной куче 6 камней, а в другой — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (24, 9), (6, 10), (6, 36). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 61. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 61 или больше камней.
В начальный момент в первой куче было 3 камня, во второй куче — S камней, 1 ≤ S ≤ 57.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество камней в куче в четыре раза. Например, пусть в одной куче 6 камней, а в другой — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (24, 9), (6, 10), (6, 36). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 61. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 61 или больше камней.
В начальный момент в первой куче было 3 камня, во второй куче — S камней, 1 ≤ S ≤ 57.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
В компьютерной системе необходимо выполнить некоторое количество вычислительных процессов, которые могут выполняться параллельно или последовательно. Для запуска некоторых процессов необходимы данные, которые получаются как результаты выполнения одного или двух других процессов — поставщиков данных. Независимые процессы (не имеющие поставщиков данных) можно запускать в любой момент времени. Если процесс B (зависимый процесс) получает данные от процесса A (поставщика данных), то процесс B может начать выполнение не раньше чем через 5 мс после завершения процесса A. Любые процессы, готовые к выполнению, можно запускать параллельно, при этом количество одновременно выполняемых процессов может быть любым, длительность процесса не зависит от других параллельно выполняемых процессов.
Исполнитель А22 преобразует целое число, записанное на экране.
У исполнителя три команды, каждой команде присвоен номер.
1. Прибавь 1.
2. Прибавь 3.
3. Прибавь предыдущее.
Первая команда увеличивает число на экране на 1, вторая увеличивает это число на 3, третья прибавляет к числу на экране число, меньшее на 1 (к числу 3 прибавляется 2, к числу 11 прибавляется 10 и так далее). Программа для исполнителя А22 — это последовательность команд.
Сколько существует программ, которые число 2 преобразуют в число 10?
Текстовый файл состоит не более, чем из 107 строчных букв английского алфавита. Найдите максимальную длину подстроки, в которой символы a и d не стоят рядом.
Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.
Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [185 311; 185 330], числа, имеющие ровно четыре различных натуральных делителя. Для каждого найденного числа запишите эти четыре делителя в четыре соседних столбца на экране с новой строки. Делители в строке должны следовать в порядке возрастания.
Например, в диапазоне [12; 14] ровно четыре различных натуральных делителя имеет число 14, поэтому для этого диапазона вывод на экране должна содержать следующие значения:
Предприятие производит закупку изделий A и B, на которую выделена определённая сумма денег. У поставщика есть в наличии различные модификации этих изделий по различной цене. При покупке необходимо руководствоваться следующими правилами.
1. Нужно купить как можно больше изделий, независимо от их типа и модификации.
2. Если можно разными способами купить максимальное количество изделий, нужно выбрать тот способ, при котором будет куплено как можно больше изделий B.
3. Если можно разными способами купить максимальное количество изделий с одинаковым количеством изделий B, нужно выбрать тот способ, при котором вся покупка будет дешевле.
Определите, сколько всего будет куплено изделий B и какая сумма останется неиспользованной.
Первая строка входного файла содержит два целых числа: N — общее количество изделий у поставщика и M — сумма выделенных на закупку денег (в рублях). Каждая из следующих N строк содержит целое число (цена изделия в рублях) и символ (латинская буква A или B), определяющий тип изделия. Все данные в строках входного файла отделены одним пробелом.
В ответе запишите два целых числа: сначала количество закупленных изделий типа B, затем оставшуюся неиспользованной сумму денег.
Пример входного файла:
6 130
30 A
50 A
60 B
20 B
70 B
10 A
В данном случае можно купить не более 4 изделий, из них не более 2 изделий B. Минимальная цена такой покупки 120 рублей (покупаем изделия 30A, 60B, 20B, 10A). Останется 10 рублей. В ответе надо записать числа 2 и 10.
Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, разность которых чётна, и в этих парах, по крайней мере, одно из чисел пары делится на 17. Порядок элементов в паре неважен. Среди всех таких пар нужно найти и вывести пару с максимальной суммой элементов. Если одинаковую максимальную сумму имеет несколько пар, можно вывести любую из них. Если подходящих пар в последовательности нет, нужно вывести два нуля.
В первой строке входных данных задаётся количество чисел N (2 ≤ N ≤ 10 000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.
Пример организации исходных данных во входном файле:
5
34
12
51
52
51
Пример выходных данных для приведённого выше примера входных данных:
51 51 В ответе укажите четыре числа: сначала значение искомой пары для файла А (два числа через пробел), затем для файла B (два числа через пробел). Числа пар впишите в порядке убывания.
Ответ:
Пояснение. Из данных пяти чисел можно составить три различные пары, удовлетворяющие условию: (34, 12), (34, 52), (51, 51). Наибольшая сумма получается в паре (51, 51). Эта пара допустима, так как число 51 встречается в исходной последовательности дважды.
Просмотр содержимого документа
«ЕГЭ 2025. Апрель Информатика Вариант 4»
1. Тип 1 № 11259
На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).
П1
П2
П3
П4
П5
П6
П7
П8
П1
15
20
18
П2
15
25
П3
25
24
22
П4
20
12
П5
13
16
17
П6
24
13
15
П7
12
16
П8
18
22
17
15
Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Г в пункт Е. В ответе запишите целое число.
2. Тип 2 № 15939
Логическая функция F задаётся выражением (z ∧ y) ∨ ((x → z ) ≡ (y → w)).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.
Переменная 1
Переменная 2
Переменная 3
Переменная 4
Функция
???
???
???
???
F
1
0
1
1
0
1
1
1
0
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1
Переменная 1
Функция
???
???
F
0
1
0
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
3. Тип 3 № 46961
В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.
Задание 3
Таблица «Движение товаров» содержит записи о поставках товаров в магазины города в первой декаде июня 2021 г. и о продаже товаров в этот же период. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит адреса магазинов.
На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.
Используя информацию из приведённой базы данных, определите, сколько килограммов сахара всех видов поступило за указанный период в магазины Заречного района.
4. Тип 4 № 9185
Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К — кодовое слово 10. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
5. Тип 5 № 14692
Автомат получает на вход четырёхзначное число (число не может начинаться с нуля). По этому числу строится новое число по следующим правилам.
1. Складываются отдельно первая и вторая, вторая и третья, третья и четвёртая цифры заданного числа.
2. Наименьшая из полученных трёх сумм удаляется.
3. Оставшиеся две суммы записываются друг за другом в порядке неубывания без разделителей.
Укажите наибольшее число, при обработке которого автомат выдаёт результат 613.
Примечание. Если меньшие из трех сумм равны, то отбрасывают одну из них.
6. Тип 6 № 47403
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:
Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом: Повтори 4 [Вперёд 12 Направо 90].
и находиться вне области, ограниченной линией, заданной данным алгоритмом: Повтори 3 [Вперёд 8 Направо 60 Вперёд 8 Направо 120]. Точки на линии учитывать не следует.
7. Тип 7 № 9759
Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 128 × 128 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
8. Тип 8 № 3193
Все 5-буквенные слова, составленные из букв А, О, У, записаны в алфавитном порядке. Вот начало списка:
1. ААААА
2. ААААО
3. ААААУ
4. АААОА
……
Запишите слово, которое стоит на 210-м месте от начала списка.
9. Тип 9 № 59714
В файле находится таблица, которая содержит в каждой из строк по 7 натуральных чисел. Ваша задача состоит в том, чтобы посчитать количество таких строк, в которых два числа повторяются по 2 раза, а три других различны, и среднее арифметическое неповторяющихся чисел больше среднего арифметического повторяющихся.
Задание 9
10. Тип 10 № 33089
Определите, сколько раз в тексте произведения А. С. Пушкина «Капитанская дочка» встречается слово «капитанская» или «Капитанская». Другие формы этого слова («капитанскую», «капитанские» и т. д.) учитывать не надо.
Задание 10
11. Тип 11 № 7785
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 23 символов и содержащий только символы A, F, G, Y, S, L (таким образом, используется 6 различных символов). Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 50 паролей. В ответе укажите только число, слово «байт» писать не нужно.
12. Тип 12 № 16389
Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 77 единиц?
НАЧАЛО
ПОКА нашлось (11111)
заменить (222, 1)
заменить (111, 2)
КОНЕЦ ПОКА
КОНЕЦ
13. Тип 13 № 15107
В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули. Обычно маска записывается по тем же правилам, что и IP-адрес, — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.
Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.
Для узла с IP-адресом 93.138.164.49 адрес сети равен 93.138.160.0. Для скольких различных значений маски это возможно?
14. Тип 14 № 27385
Значение выражения 3435 + 3434 + 496 − 713 − 21 записали в системе счисления с основанием 7. Сколько различных цифр содержит эта запись?
Пример. Запись 1222337 содержит три различные цифры: 1, 2 и 3.
15. Тип 15 № 15634
Для какого наименьшего целого неотрицательного числа А выражение
(y + 2x 30) ∨ (y 20)
тождественно истинно, то есть принимает значение 1 при любых целых неотрицательных x и y?
16. Тип 16 № 35905
Обозначим через mod(a, b) остаток от деления натурального числа a на натуральное число b. Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:
F(0) = 0;
F(n) = F(n / 3), если n 0 и при этом mod(n, 3) = 0;
Назовите минимальное значение n, для которого F(n) = 9.
17. Тип 17 № 37354
В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, у которых сумма нечётна, а произведение делится на 5, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.
17.txt
Ответ:
18. Тип 18 № 35992
Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит робот. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы квадрата робот не может. При этом ведётся подсчёт суммы по следующим правилам: число в очередной клетке, через которую проходит робот, включается в сумму, если оно больше числа в предыдущей клетке на пути робота. Если число в очередной клетке не больше числа в предыдущей, сумма не изменяется. Число в начальной клетке всегда включается в сумму. Необходимо переместить робота в правый нижний угол так, чтобы полученная сумма была максимальной. В ответе запишите максимально возможную сумму.
Исходные данные записаны в электронной таблице.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
44
42
89
37
18
35
50
20
6
41
26
64
7
9
70
85
Для указанных входных данных оптимальным маршрутом будет путь по клеткам 44, 42, 89, 50, 26, 70, 85. Итоговая сумма равна 44 + 89 + 70 + 85 = 288. Числа 42, 50 и 26 не включаются в сумму, так как 42
19. Тип 19 № 27754
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество камней в куче в четыре раза. Например, пусть в одной куче 6 камней, а в другой — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (24, 9), (6, 10), (6, 36). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 61. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 61 или больше камней.
В начальный момент в первой куче было 3 камня, во второй куче — S камней, 1 ≤ S ≤ 57.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
20. Тип 20 № 27755
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество камней в куче в четыре раза. Например, пусть в одной куче 6 камней, а в другой — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (24, 9), (6, 10), (6, 36). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 61. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 61 или больше камней.
В начальный момент в первой куче было 3 камня, во второй куче — S камней, 1 ≤ S ≤ 57.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
21. Тип 21 № 27756
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество камней в куче в четыре раза. Например, пусть в одной куче 6 камней, а в другой — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (24, 9), (6, 10), (6, 36). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 61. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 61 или больше камней.
В начальный момент в первой куче было 3 камня, во второй куче — S камней, 1 ≤ S ≤ 57.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
22. Тип 22 № 48470
В компьютерной системе необходимо выполнить некоторое количество вычислительных процессов, которые могут выполняться параллельно или последовательно. Для запуска некоторых процессов необходимы данные, которые получаются как результаты выполнения одного или двух других процессов — поставщиков данных. Независимые процессы (не имеющие поставщиков данных) можно запускать в любой момент времени. Если процесс B (зависимый процесс) получает данные от процесса A (поставщика данных), то процесс B может начать выполнение не раньше чем через 5 мс после завершения процесса A. Любые процессы, готовые к выполнению, можно запускать параллельно, при этом количество одновременно выполняемых процессов может быть любым, длительность процесса не зависит от других параллельно выполняемых процессов.
Задание 22
В таблице представлены идентификатор (ID) каждого процесса, его длительность и ID поставщиков данных для зависимых процессов.
Определите, за какое минимальное время можно выполнить все процессы. В ответе запишите целое число — минимальное время в мс.
23. Тип 23 № 9206
Исполнитель А22 преобразует целое число, записанное на экране.
У исполнителя три команды, каждой команде присвоен номер.
1. Прибавь 1.
2. Прибавь 3.
3. Прибавь предыдущее.
Первая команда увеличивает число на экране на 1, вторая увеличивает это число на 3, третья прибавляет к числу на экране число, меньшее на 1 (к числу 3 прибавляется 2, к числу 11 прибавляется 10 и так далее). Программа для исполнителя А22 — это последовательность команд.
Сколько существует программ, которые число 2 преобразуют в число 10?
24. Тип 24 № 37159
Текстовый файл состоит не более, чем из 107 строчных букв английского алфавита. Найдите максимальную длину подстроки, в которой символы a и d не стоят рядом.
Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.
Задание 24
25. Тип 25 № 27852
Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [185 311; 185 330], числа, имеющие ровно четыре различных натуральных делителя. Для каждого найденного числа запишите эти четыре делителя в четыре соседних столбца на экране с новой строки. Делители в строке должны следовать в порядке возрастания.
Например, в диапазоне [12; 14] ровно четыре различных натуральных делителя имеет число 14, поэтому для этого диапазона вывод на экране должна содержать следующие значения:
1 2 7 14
Ответ:
26. Тип 26 № 39255
Предприятие производит закупку изделий A и B, на которую выделена определённая сумма денег. У поставщика есть в наличии различные модификации этих изделий по различной цене. При покупке необходимо руководствоваться следующими правилами.
1. Нужно купить как можно больше изделий, независимо от их типа и модификации.
2. Если можно разными способами купить максимальное количество изделий, нужно выбрать тот способ, при котором будет куплено как можно больше изделий B.
3. Если можно разными способами купить максимальное количество изделий с одинаковым количеством изделий B, нужно выбрать тот способ, при котором вся покупка будет дешевле.
Определите, сколько всего будет куплено изделий B и какая сумма останется неиспользованной.
Входные данные.
Задание 26
Первая строка входного файла содержит два целых числа: N — общее количество изделий у поставщика и M — сумма выделенных на закупку денег (в рублях). Каждая из следующих N строк содержит целое число (цена изделия в рублях) и символ (латинская буква A или B), определяющий тип изделия. Все данные в строках входного файла отделены одним пробелом.
В ответе запишите два целых числа: сначала количество закупленных изделий типа B, затем оставшуюся неиспользованной сумму денег.
Пример входного файла:
6 130
30 A
50 A
60 B
20 B
70 B
10 A
В данном случае можно купить не более 4 изделий, из них не более 2 изделий B. Минимальная цена такой покупки 120 рублей (покупаем изделия 30A, 60B, 20B, 10A). Останется 10 рублей. В ответе надо записать числа 2 и 10.
Ответ:
27. Тип 27 № 27991
Дана последовательность N целых положительных чисел. Рассматриваются все пары элементов последовательности, разность которых чётна, и в этих парах, по крайней мере, одно из чисел пары делится на 17. Порядок элементов в паре неважен. Среди всех таких пар нужно найти и вывести пару с максимальной суммой элементов. Если одинаковую максимальную сумму имеет несколько пар, можно вывести любую из них. Если подходящих пар в последовательности нет, нужно вывести два нуля.
Входные данные.
Файл A
Файл B
В первой строке входных данных задаётся количество чисел N (2 ≤ N ≤ 10 000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.
Пример организации исходных данных во входном файле:
5
34
12
51
52
51
Пример выходных данных для приведённого выше примера входных данных:
51 51 В ответе укажите четыре числа: сначала значение искомой пары для файла А (два числа через пробел), затем для файла B (два числа через пробел). Числа пар впишите в порядке убывания.
Ответ:
Пояснение. Из данных пяти чисел можно составить три различные пары, удовлетворяющие условию: (34, 12), (34, 52), (51, 51). Наибольшая сумма получается в паре (51, 51). Эта пара допустима, так как число 51 встречается в исходной последовательности дважды.