СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 22.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

ЕГЭ 2025. Апрель Информатика Вариант 7

Категория: Информатика

Нажмите, чтобы узнать подробности

1.  Тип 1 № 38446

На рисунке схема дорог N-⁠ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

 

 

 

 

 

 

 

 

  П1 П2 П3 П4 П5 П6 П7
П1   3     4    
П2 3       12 13  
П3       10 11    
П4     10   9   7
П5 4 12 11 9   8 6
П6   13     8   5
П7       7 6 5  

 

 

 

 

 

 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта Б в пункт В и из пункта Г в пункт Д.

В ответе запишите целое число.

2.  Тип 2 № 38534

Миша заполнял таблицу истинности логической функции F

 

¬ (y → (x ≡ w)) ∧ (z → x),

 

но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

 

 

 

 

 

Переменная 1 Переменная 2 Переменная 3 Переменная 4 Функция
  1 1   1
0     0 1
  0 1 0 1

 

Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить

не нужно.

 

Пример. Функция F задана выражением ¬ x ∨ y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид:

 

 

 

Переменная 1 Переменная 2 Функция
??? ??? F
0 1 0

 

В этом случае первому столбцу соответствует переменная y, а второму столбцу  — переменная x. В ответе следует написать: yx.

3.  Тип 3 № 61383

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

 

Задание 3

 

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите общую прибыль, полученную за месяц магазинами Заречного района от торговли всеми видами кофе.

Под прибылью в этой задаче понимается разница между стоимостью продажи и стоимостью поставки товаров.

В ответе запишите число  — найденную прибыль в рублях.

4.  Тип 4 № 10406

По каналу связи передаются сообщения, содержащие только буквы А, Б, В, Г, Д, Е. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано; для букв A, Б, В используются такие кодовые слова: А  — 1, Б  — 010, В  — 001.

Какова наименьшая возможная суммарная длина всех кодовых слов?

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование.

5.  Тип 5 № 13563

Автомат получает на вход четырёхзначное десятичное число, в котором все цифры нечётные. По этому числу строится новое число по следующим правилам.

1.  Складываются первая и вторая, а также третья и четвёртая цифры.

2.  Полученные два числа записываются друг за другом в порядке неубывания (без разделителей).

Пример. Исходное число: 7511. Суммы: 7 + 5  =  12; 1 + 1  =  2. Результат: 212. Сколько существует чисел, в результате обработки которых автомат выдаст число 616?

6.  Тип 6 № 47307

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 4 [Вперёд 10 Направо 60 Вперёд 10 Направо 120].

Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.

7.  Тип 7 № 2411

Сколько секунд потребуется обычному модему, передающему сообщения со скоростью 28800 бит/с, чтобы передать цветное растровое изображение размером 640 х 480 пикселей, при условии, что цвет каждого пикселя кодируется тремя байтами?

8.  Тип 8 № 7755

Все 5-⁠буквенные слова, составленные из букв Л, Н, Р, Т, записаны в алфавитном порядке. Вот начало списка:

1.  ЛЛЛЛЛ

2.  ЛЛЛЛН

3.  ЛЛЛЛР

4.  ЛЛЛЛТ

5.  ЛЛЛНЛ

 

Запишите слово, которое стоит на 150-⁠м месте от начала списка.

9.  Тип 9 № 72594

В каждой строке электронной таблицы записаны шесть натуральных чисел.

Определите количество строк таблицы, содержащих числа, для которых одновременно выполнены все следующие условия:

— в строке есть число, повторяющееся не меньше трёх раз;

— в строке есть число, не повторяющееся в этой строке;

— среднее арифметическое всех повторяющихся чисел строки (с учётом количества повторений) меньше среднего арифметического неповторяющихся чисел этой строки.

В ответе запишите число  — количество строк, удовлетворяющих заданным условиям.

 

Задание 9

 

10.  Тип 10 № 61356

Определите, сколько раз в книге братьев Стругацких «Понедельник начинается в субботу» встречается сочетание букв «ток» не в начале и не в конце слова. Например, сочетание «ток» в слове «протокол» надо учитывать, а в словах «токарь» и «поток»  — нет.

 

Задание 10

 

11.  Тип 11 № 7195

Для регистрации на сайте некоторой страны пользователю требуется придумать пароль. Длина пароля  — ровно 7 символов. В качестве символов используются десятичные цифры и 30 различных букв местного алфавита, причём все буквы используются в двух начертаниях: как строчные, так и прописные (регистр буквы имеет значение!). Под хранение каждого такого пароля на компьютере отводится минимально возможное и одинаковое целое количество байтов, при этом используется посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством битов. Определите объём памяти, который занимает хранение 40 паролей. (Ответ дайте в байтах.)

12.  Тип 12 № 36867

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка

исполнителя при этом не изменяется.

 

Цикл

    ПОКА условие

        последовательность команд

    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие

        ТО команда1

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно).

В конструкции

    ЕСЛИ условие

        ТО команда1

        ИНАЧЕ команда2

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Дана программа для редактора:

 

НАЧАЛО

    ПОКА НЕ нашлось (00)

        заменить (01, 210)

        заменить (02, 320)

        заменить (03, 3012)

    КОНЕЦ ПОКА

КОНЕЦ

 

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними содержала только единицы, двойки и тройки. После выполнения данной программы получилась строка, содержащая 26 единиц, 54 двойки и 48 троек. Сколько цифр было в исходной строке?

13.  Тип 13 № 15134

В терминологии сетей TCP/⁠IP маской сети называется двоичное число, определяющее, какая часть IP-⁠адреса узла сети относится к адресу сети, а какая  — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места  — нули. Обычно маска записывается по тем же правилам, что и IP-⁠адрес,  — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-⁠адресу узла и маске.

Например, если IP-⁠адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Для узла с IP-⁠адресом 93.138.161.49 адрес сети равен 93.138.160.0. Для скольких различных значений маски это возможно?

14.  Тип 14 № 28552

Значение выражения 2166 + 2164 + 366 − 614 − 24 записали в системе счисления с основанием 6. Сколько различных цифр содержит эта запись?

Пример. Запись 1222337 содержит три различные цифры: 1, 2 и 3.

15.  Тип 15 № 29663

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наибольшего натурального числа А формула

 

(A < 50) ∧ (¬ДЕЛ(x, А) → (ДЕЛ(x, 10) → ¬ДЕЛ(x, 12)))

 

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

16.  Тип 16 № 27413

Алгоритм вычисления значения функции F(n), где n  — натуральное число, задан следующими соотношениями:

F(n)  =  1 при n  =  1;

F(n)  =  n + F(n − 1), если n чётно;

F(n)  =  2 · F(n − 2), если n > 1 и при этом n нечётно.

 

Чему равно значение функции F(26)?

17.  Тип 17 № 37347

В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, для которых произведение элементов не кратно 14, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.

 

17.txt

 

Ответ:

18.  Тип 18 № 47015

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Выходить за пределы поля робот не может. Некоторые клетки на поле окружены границами, в эти клетки роботу заходить нельзя.

В начальный момент запас энергии робота составляет 3000 единиц. Проходя через каждую клетку, робот расходует энергию, при этом расход равен числу, записанному в клетке. В клетках с выделенным фоном находятся зарядные станции. При прохождении через эти клетки робот не расходует, а пополняет запас энергии. Сумма пополнения равна числу, записанному в этой клетке.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую верхнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем  — минимальное.

Исходные данные записаны в электронной таблице. Границы отмечены утолщёнными линиями.

 

Задание 18

 

Пример входных данных (для таблицы размером 4 × 4):

 

 

 

 

 

 

13 8 69 50
30 35 57 17
32 90 55 32
44 12 80 43

 

При указанных входных данных максимальное значение получается при движении по маршруту:

 

3000 − 44 − 12 + 90 − 55 − 32 − 17 − 50 = 2880,

 

а минимальное  — при движении по маршруту:

 

3000 − 44 − 12 − 80 − 55 − 32 − 17 − 50 = 2710.

 

Ответ:

 

19.  Тип 19 № 37154

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 39.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Петя не может выиграть своим первым ходом, однако после любого хода Пети Ваня может выиграть. При каком значении S это возможно?

20.  Тип 20 № 37155

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 39.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Петя имеет выигрышную стратегию в два хода, при этом Петя не может выиграть первым ходом. Укажите два значения S, при которых это возможно. Значения укажите в порядке возрастания без разделительных знаков.

21.  Тип 21 № 37156

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 39.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня имеет выигрышную стратегию за один или два хода, при этом не имеет выигрышной стратегии в один ход. Найдите минимальное значение S, при котором это возможно.

22.  Тип 22 № 47587

В файле 22_6.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы  — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

 

ID процесса B Время выполнения процесса B (мс) ID процесса(ов) A
1

 

4 0
2 3 0
3 1 1;2
4 7 3

 

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2  — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1  =  5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7  =  12 мс.

23.  Тип 23 № 13552

Исполнитель Осень16 преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера.

1.  Прибавить 1.

2.  Прибавить 2.

3.  Прибавить 4.

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 2, третья  — увеличивает на 4.

Программа для исполнителя Осень16  — это последовательность команд.

Сколько существует программ, для которых при исходном числе 1 результатом является число 15 и при этом траектория вычислений содержит число 8?

Траектория вычислений программы  — это последовательность результатов выполнения всех команд программы. Например, для программы 121 при исходном числе 7 траектория будет состоять из чисел 8, 10, 11.

24.  Тип 24 № 40740

Текстовый файл содержит только заглавные буквы латинского алфавита (ABC...Z). Определите максимальное количество идущих подряд символов, среди которых нет ни одной буквы A и при этом не менее трёх букв E.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

 

Задание 24

 

25.  Тип 25 № 38959

 

Пусть M (N)  — произведение 5 наименьших различных натуральных делителей натурального числа N, не считая единицы. Если у числа N меньше 5 таких делителей, то M (N) считается равным нулю.

Найдите 5 наименьших натуральных чисел, превышающих 200 000 000, для которых 0 < M (N) < N. В ответе запишите найденные значения M (N) в порядке возрастания соответствующих им чисел N.

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

26.  Тип 26 № 28141

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

 

Задание 26

 

В первой строке входного файла находятся два числа: S  — размер свободного места на диске (натуральное число, не превышающее 10 000) и N  — количество пользователей (натуральное число, не превышающее 5000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов  — 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар  — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

 

27.  Тип 27 № 40743

Дана последовательность целых чисел. Необходимо найти максимально возможную сумму её непрерывной подпоследовательности, в которой количество положительных чётных элементов кратно k  =  30.

Входные данные.

 

Файл A

Файл B

 

Первая строка входного файла содержит целое число N  — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число. Гарантируется, что общая сумма любой выборки заданных чисел не превышает 2 · 109 по абсолютной величине.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.

 

Ответ:

Показать полностью

Просмотр содержимого документа
«ЕГЭ 2025. Апрель Информатика Вариант 7»

1.  Тип 1 № 38446

На рисунке схема дорог N-⁠ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

 

П1

П2

П3

П4

П5

П6

П7

П1

3

4

П2

3

12

13

П3

10

11

П4

10

9

7

П5

4

12

11

9

8

6

П6

13

8

5

П7

7

6

5

 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта Б в пункт В и из пункта Г в пункт Д.

В ответе запишите целое число.

2.  Тип 2 № 38534

Миша заполнял таблицу истинности логической функции F

¬ (y → (x ≡ w)) ∧ (z → x),

но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

 

Переменная 1

Переменная 2

Переменная 3

Переменная 4

Функция

1

1

1

0

0

1

0

1

0

1

 

Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить

не нужно.

 

Пример. Функция F задана выражением ¬ x ∨ y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид:

 

Переменная 1

Переменная 2

Функция

???

???

F

0

1

0

 

В этом случае первому столбцу соответствует переменная y, а второму столбцу  — переменная x. В ответе следует написать: yx.

3.  Тип 3 № 61383

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

Задание 3

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите общую прибыль, полученную за месяц магазинами Заречного района от торговли всеми видами кофе.

Под прибылью в этой задаче понимается разница между стоимостью продажи и стоимостью поставки товаров.

В ответе запишите число  — найденную прибыль в рублях.

4.  Тип 4 № 10406

По каналу связи передаются сообщения, содержащие только буквы А, Б, В, Г, Д, Е. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано; для букв A, Б, В используются такие кодовые слова: А  — 1, Б  — 010, В  — 001.

Какова наименьшая возможная суммарная длина всех кодовых слов?

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование.

5.  Тип 5 № 13563

Автомат получает на вход четырёхзначное десятичное число, в котором все цифры нечётные. По этому числу строится новое число по следующим правилам.

1.  Складываются первая и вторая, а также третья и четвёртая цифры.

2.  Полученные два числа записываются друг за другом в порядке неубывания (без разделителей).

Пример. Исходное число: 7511. Суммы: 7 + 5  =  12; 1 + 1  =  2. Результат: 212. Сколько существует чисел, в результате обработки которых автомат выдаст число 616?

6.  Тип 6 № 47307

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 4 [Вперёд 10 Направо 60 Вперёд 10 Направо 120].

Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.

7.  Тип 7 № 2411

Сколько секунд потребуется обычному модему, передающему сообщения со скоростью 28800 бит/с, чтобы передать цветное растровое изображение размером 640 х 480 пикселей, при условии, что цвет каждого пикселя кодируется тремя байтами?

8.  Тип 8 № 7755

Все 5-⁠буквенные слова, составленные из букв Л, Н, Р, Т, записаны в алфавитном порядке. Вот начало списка:

1.  ЛЛЛЛЛ

2.  ЛЛЛЛН

3.  ЛЛЛЛР

4.  ЛЛЛЛТ

5.  ЛЛЛНЛ

 

Запишите слово, которое стоит на 150-⁠м месте от начала списка.

9.  Тип 9 № 72594

В каждой строке электронной таблицы записаны шесть натуральных чисел.

Определите количество строк таблицы, содержащих числа, для которых одновременно выполнены все следующие условия:

— в строке есть число, повторяющееся не меньше трёх раз;

— в строке есть число, не повторяющееся в этой строке;

— среднее арифметическое всех повторяющихся чисел строки (с учётом количества повторений) меньше среднего арифметического неповторяющихся чисел этой строки.

В ответе запишите число  — количество строк, удовлетворяющих заданным условиям.

Задание 9

10.  Тип 10 № 61356

Определите, сколько раз в книге братьев Стругацких «Понедельник начинается в субботу» встречается сочетание букв «ток» не в начале и не в конце слова. Например, сочетание «ток» в слове «протокол» надо учитывать, а в словах «токарь» и «поток»  — нет.

Задание 10

11.  Тип 11 № 7195

Для регистрации на сайте некоторой страны пользователю требуется придумать пароль. Длина пароля  — ровно 7 символов. В качестве символов используются десятичные цифры и 30 различных букв местного алфавита, причём все буквы используются в двух начертаниях: как строчные, так и прописные (регистр буквы имеет значение!). Под хранение каждого такого пароля на компьютере отводится минимально возможное и одинаковое целое количество байтов, при этом используется посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством битов. Определите объём памяти, который занимает хранение 40 паролей. (Ответ дайте в байтах.)

12.  Тип 12 № 36867

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка

исполнителя при этом не изменяется.

 

Цикл

    ПОКА условие

        последовательность команд

    КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

    ЕСЛИ условие

        ТО команда1

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно).

В конструкции

    ЕСЛИ условие

        ТО команда1

        ИНАЧЕ команда2

    КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Дана программа для редактора:

 

НАЧАЛО

    ПОКА НЕ нашлось (00)

        заменить (01, 210)

        заменить (02, 320)

        заменить (03, 3012)

    КОНЕЦ ПОКА

КОНЕЦ

 

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними содержала только единицы, двойки и тройки. После выполнения данной программы получилась строка, содержащая 26 единиц, 54 двойки и 48 троек. Сколько цифр было в исходной строке?

13.  Тип 13 № 15134

В терминологии сетей TCP/⁠IP маской сети называется двоичное число, определяющее, какая часть IP-⁠адреса узла сети относится к адресу сети, а какая  — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места  — нули. Обычно маска записывается по тем же правилам, что и IP-⁠адрес,  — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-⁠адресу узла и маске.

Например, если IP-⁠адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Для узла с IP-⁠адресом 93.138.161.49 адрес сети равен 93.138.160.0. Для скольких различных значений маски это возможно?

14.  Тип 14 № 28552

Значение выражения 2166 + 2164 + 366 − 614 − 24 записали в системе счисления с основанием 6. Сколько различных цифр содержит эта запись?

Пример. Запись 1222337 содержит три различные цифры: 1, 2 и 3.

15.  Тип 15 № 29663

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наибольшего натурального числа А формула

(A x, А) → (ДЕЛ(x, 10) → ¬ДЕЛ(x, 12)))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

16.  Тип 16 № 27413

Алгоритм вычисления значения функции F(n), где n  — натуральное число, задан следующими соотношениями:

F(n)  =  1 при n  =  1;

F(n)  =  n + F(n − 1), если n чётно;

F(n)  =  2 · F(n − 2), если n 1 и при этом n нечётно.

 

Чему равно значение функции F(26)?

17.  Тип 17 № 37347

В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, для которых произведение элементов не кратно 14, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.

17.txt

Ответ:

18.  Тип 18 № 47015

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Выходить за пределы поля робот не может. Некоторые клетки на поле окружены границами, в эти клетки роботу заходить нельзя.

В начальный момент запас энергии робота составляет 3000 единиц. Проходя через каждую клетку, робот расходует энергию, при этом расход равен числу, записанному в клетке. В клетках с выделенным фоном находятся зарядные станции. При прохождении через эти клетки робот не расходует, а пополняет запас энергии. Сумма пополнения равна числу, записанному в этой клетке.

Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую верхнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем  — минимальное.

Исходные данные записаны в электронной таблице. Границы отмечены утолщёнными линиями.

Задание 18

Пример входных данных (для таблицы размером 4 × 4):

 

13

8

69

50

30

35

57

17

32

90

55

32

44

12

80

43

 

При указанных входных данных максимальное значение получается при движении по маршруту:

3000 − 44 − 12 + 90 − 55 − 32 − 17 − 50 = 2880,

а минимальное  — при движении по маршруту:

3000 − 44 − 12 − 80 − 55 − 32 − 17 − 50 = 2710.

Ответ:

19.  Тип 19 № 37154

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 39.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Петя не может выиграть своим первым ходом, однако после любого хода Пети Ваня может выиграть. При каком значении S это возможно?

20.  Тип 20 № 37155

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 39.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Петя имеет выигрышную стратегию в два хода, при этом Петя не может выиграть первым ходом. Укажите два значения S, при которых это возможно. Значения укажите в порядке возрастания без разделительных знаков.

21.  Тип 21 № 37156

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 39.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня имеет выигрышную стратегию за один или два хода, при этом не имеет выигрышной стратегии в один ход. Найдите минимальное значение S, при котором это возможно.

22.  Тип 22 № 47587

В файле 22_6.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы  — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

ID процесса B

Время выполнения процесса B (мс)

ID процесса(ов) A

1

4

0

2

3

0

3

1

1;2

4

7

3

 

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2  — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1  =  5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7  =  12 мс.

23.  Тип 23 № 13552

Исполнитель Осень16 преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера.

1.  Прибавить 1.

2.  Прибавить 2.

3.  Прибавить 4.

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 2, третья  — увеличивает на 4.

Программа для исполнителя Осень16  — это последовательность команд.

Сколько существует программ, для которых при исходном числе 1 результатом является число 15 и при этом траектория вычислений содержит число 8?

Траектория вычислений программы  — это последовательность результатов выполнения всех команд программы. Например, для программы 121 при исходном числе 7 траектория будет состоять из чисел 8, 10, 11.

24.  Тип 24 № 40740

Текстовый файл содержит только заглавные буквы латинского алфавита (ABC...Z). Определите максимальное количество идущих подряд символов, среди которых нет ни одной буквы A и при этом не менее трёх букв E.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24

25.  Тип 25 № 38959

Пусть M (N)  — произведение 5 наименьших различных натуральных делителей натурального числа N, не считая единицы. Если у числа N меньше 5 таких делителей, то M (N) считается равным нулю.

Найдите 5 наименьших натуральных чисел, превышающих 200 000 000, для которых 0 M (N) N. В ответе запишите найденные значения M (N) в порядке возрастания соответствующих им чисел N.

Ответ:

26.  Тип 26 № 28141

Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

Задание 26

В первой строке входного файла находятся два числа: S  — размер свободного места на диске (натуральное число, не превышающее 10 000) и N  — количество пользователей (натуральное число, не превышающее 5000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Пример входного файла:

100 4

80

30

50

40

При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов  — 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар  — 50, поэтому ответ для приведённого примера:

2 50

 

Ответ:

27.  Тип 27 № 40743

Дана последовательность целых чисел. Необходимо найти максимально возможную сумму её непрерывной подпоследовательности, в которой количество положительных чётных элементов кратно k  =  30.

Входные данные.

Файл A

Файл B

Первая строка входного файла содержит целое число N  — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число. Гарантируется, что общая сумма любой выборки заданных чисел не превышает 2 · 109 по абсолютной величине.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.

 

Ответ:



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!