Просмотр содержимого документа
«Формулы для нахождения площади треугольника»
Площадь треугольника
Презентацию подготовила: учитель математики МКОУ Тогучинского района «ТСШ №4» Ладошкина Н. С.
Решить устно
А
В
А
5
К
В
9
4
5
А
С
В
4
С
К
2
С
рис.1
рис.3
рис.2
Площадь прямоугольного треугольника
А
А
А
b
В
В
С
С
С
a
Решить устно и ответы записать в тетрадь
Найти площадь треугольника, если:
1. а =10 см; b=3 см;
2. b=6 см; c=10 см.
с
b
a
Ответы: 1) 15 см 2 ; 2) 40
A
c
b
h а
ɣ
B
С
a
D
Если в треугольнике известны две стороны
и угол между ними, то площадь такого треугольника можно найти, как половина произведения двух сторон на синус угла между ними.
Решить устно и ответы записать в тетрадь
а=12 см, b=9 см, ɣ=30 0 . Найти S.
№ 3
c
b
Ответ: S=27 см 2 .
ɣ
a
№ 4
α=80 0 , ɣ=70 0 , а=10 см, с=8 см. Найти S.
c
α
b
ɣ
β
Ответ: S=20 см 2 .
a
Формула Герона
с
a
b
Найдите площадь треугольника, стороны которого равны 26 см, 28 см и 30 см. Найдите высоту, проведенную к большей стороне.
Решение
Площадь треугольника через r - радиус вписанной в него окружности
B
r
O
C
А
Площадь треугольника равна произведению полупериметра треугольника на радиус вписанной в него окружности:
Решить самостоятельно:
1. Катеты прямоугольного треугольника 6 см, 8 см. Найдите радиусы описанной и вписанной окружностей.
2. Стороны треугольника 4 см, 5 см и 7 см. Найти радиус вписанной в треугольник окружности.
3. Стороны треугольника 5 см и 8 см, а угол между ними 60 0 . Найти радиус окружности, вписанной в треугольник.
Площадь треугольника через R - радиус описанной около
него окружности
B
O
R
A
C
II формула Герона
B
C
A
Угол при вершине равнобедренного треугольника равен 30 0 , а его площадь – 150 см 2 . Найдите боковую сторону треугольника.
Решение
В
С
А