Геометрия, 8 класс
Урок № 41 03.02.2022
Тема урока: Практические приложения подобия треугольников
Цели урока:
закрепить умение решения задач на построение методом подобия.
Развивать логическое мышление, творческие способности учащихся, математическую речь.
Развитие любознательности, интереса к геометрии.
Тип урока: усвоение новых знаний и умений.
Оборудование: доска, мел, учебник, презентация.
Ход урока
I. Проверка домашнего задания.
Рассмотреть решение задач № 586, № 587.
II. Анализ самостоятельной работы.
III. Решение задач.
№ 590.
Решение
Дано:
Построить:
АВС,
С = 90°, АВ = PQ,
.
Анализ. Задачу будем решать методом подобия. Сначала можно построить какой-нибудь прямоугольный треугольник АВ1С1 (
С1 = 90°) так, чтобы
, а затем, используя условие АВ = PQ, построить искомый треугольник АВС.
Построение.
1. Строим треугольник АВ1С1 так, чтобы
С1 = 90°, С1А = Р1Q, С1В1 = Р2Q2 (п. 38, зад. 1).
2. На луче АВ1 отложим отрезок АВ = РQ.
3. Через точку В проведем прямую, параллельную В1С1. Она пересекает луч АС1 в точке С. Треугольник АВС – искомый.
Доказательство.
АВС
А1В1С1 по первому признаку подобия треугольников (
А – общий,
С =
С1, так как ВС || В1С1), поэтому
С = 90°,
.
Сторона АВ равна данному отрезку PQ по построению. Итак, треугольник АВС удовлетворяет всем условиям задачи.
Исследование.
Из построения следует, что задача при любых данных отрезках PQ, Р1Q1 и P2Q2 имеет решение. Задача имеет единственное решение. В самом деле, если
А1В1С1 и
А2В2С2 удовлетворяют условиям задачи, то они подобны, а так как А1В1 = РQ, А2В2 = РQ, то А1В1 = А2В2 и, значит,
А1В1С1 =
А2В2С2.
№ 622.
Дано:
АВС.
Построить
А1В1С1 :
= 2SАВС и
А1В1С1
АВС.
Построение.
1) Построим
АВF так, чтобы АВ
ВF и BF = АВ (как описано в задаче № 290).
2) Построим
АCЕ так, чтобы СЕ
АС и СЕ = АС аналогично.
3) На лучах АВ и АС отложим соответственно отрезки АВ1 = AF и АС1 = АЕ.
4) Проведем отрезок В1С1.
5) Тогда
АВ1С1 – искомый.
Доказательство.
1) По теореме Пифагора
2) По построению AB1 = AF =
AB.
AC1 = AE =
AC.
3)
.
4)
А1В1С1
АВС (по второму признаку).
5)
= 2.
Поэтому
АВ1С1 удовлетворяет всем условиям задачи.
IV. Самостоятельная работа.
Вариант I
Постройте прямоугольный треугольник по острому углу и медиане, проведенной из вершины этого угла.
Вариант II
Постройте прямоугольный треугольник по острому углу и биссектрисе прямого угла.
3 : 4 его диагоналей.
V. Итоги урока.
Домашнее задание: вопросы 8–12 на с. 160–161; № 588, прочитать п. 65.
№ 588.
Дано:
А,
, AM – медиана.
Построить: ΔАВС.
Построение.
1) На произвольной прямой отметим произвольно точку А и отложим
А.
2) Пусть а – произвольный единичный отрезок.
3) На сторонах
А отложим отрезки АВ1 = 2а и АС1 = 3а.
4) Проведем В1С1 и разделим его пополам точкой О.
5) Проведем луч АО и отложим отрезок АМ.
6) Через точку М проведем прямую b || B1C1; точки пересечения со сторонами угла А обозначим В и С.
7)
АВС – искомый.
Доказательство.
1)
АВС
АВ1С1 (
A – общий,
AВ1С1 =
AВС, как соответственные при ВС || B1C1 и секущей АВ).
2)
.
3) Аналогично доказывается, что
= 1.
4) Полученный
АВС – искомый, так как АМ – медиана,
по доказанному.