СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Основные формулы школьного курса астрономии

Категория: Астрономия

Нажмите, чтобы узнать подробности

Решение задач по астрономии формирует у школьников навыки самостоятельной работы с дополнительной литературой, целенаправленного поиска и получения необходимой информации, позволяет углубить и расширить знания по прикладным вопросам астрономии, являющимся неотъемлемой частью предмета.  При решении задач можно пользоваться любыми астрономическими таблицами и необходимыми формулами.

 Задачи по астрономии носят не только качественный, оценочный характер. Умение решать расчетные задачи предполагает знание астрономических формул.

Предлагаемая подборка формул поможет в работе учителя и при подготовке учеников к контрольным и олимпиадным мероприятиям. 

Просмотр содержимого документа
«Основные формулы школьного курса астрономии»

Основные формулы школьного курса астрономии

1. Теоретическая разрешающая способность телескопа:

, где λ – средняя длина световой волны (5,5·10-7 м), D – диаметр объектива телескопа, или , где D – диаметр объектива телескопа в миллиметрах.

2. Увеличение телескопа:

, где F – фокусное расстояние объектива, f – фокусное расстояние окуляра.

3. Высота светил в кульминации:

высота светил в верхней кульминации, кульминирующих к югу от зенита ( ):

, где – широта места наблюдения, – склонение светила;

высота светил в верхней кульминации, кульминирующих к северу от зенита ( ):

, где – широта места наблюдения, – склонение светила;

высота светил в нижней кульминации:

, где – широта места наблюдения, – склонение светила.

4. Астрономическая рефракция:

приближенная формула для вычисления угла рефракции, выраженного в секундах дуги (при температуре +10°C и атмосферном давлении 760 мм. рт. ст.):

, где z – зенитное расстояние светила (для z

5. Время:

звездное время:

, где – прямое восхождение какого-либо светила, t – его часовой угол;

среднее солнечное время (местное среднее время):

Tm=T+, где T – истинное солнечное время, – уравнение времени;

всемирное время:

, где  – долгота пункта с местным средним временем Tm, выраженная в часовой мере, T0 – всемирное время в этот момент;

поясное время:

, где T0 – всемирное время; n – номер часового пояса (для Гринвича n=0, для Москвы n=2, для Красноярска n=6);

декретное время:

или

6. Формулы, связывающие сидерический (звездный) период обращения планеты T с синодическим периодом ее обращения S:

для верхних планет:

;

для нижних планет:

, где T – звездный период обращения Земли вокруг Солнца.

7. Третий закон Кеплера:

, где Т1 и Т2 – периоды обращения планет, a1 и a2 – большие полуоси их орбиты.

8. Закон всемирного тяготения:

, где m1 и m2 – массы притягивающихся материальных точек, r – расстояние между ними, G – гравитационная постоянная.

9. Третий обобщенный закон Кеплера:

, где m1 и m2 – массы двух взаимно притягивающихся тел, r – расстояние между их центрами, Т – период обращения этих тел вокруг общего центра масс, G – гравитационная постоянная;

для системы Солнце и две планеты:

, где Т1 и Т2 – сидерические (звездные) периоды обращения планет, М – масса Солнца, m1 и m2 – массы планет, a1 и a2 –большие полуоси орбит планет;

для систем Солнце и планета, планета и спутник:

, где M – масса Солнца; m1 – масса планеты; m2 – масса спутника планеты; Т1 и a1 – период обращения планеты вокруг Солнца и большая полуось ее орбиты; Т2 и a2 – период обращения спутника вокруг планеты и большая полуось его орбиты;

при M m1, а m1 m2,

.

10. Линейная скорость движения тела по параболической орбите (параболическая скорость):

, где G – гравитационная постоянная, M – масса центрального тела, r – радиус-вектор избранной точки параболической орбиты.

11. Линейная скорость движения тела по эллиптической орбите в избранной точке:

, где G – гравитационная постоянная, M – масса центрального тела, r – радиус-вектор избранной точки эллиптической орбиты, a – большая полуось эллиптической орбиты.

12. Линейная скорость движения тела по круговой орбите (круговая скорость):

, где G – гравитационная постоянная, M – масса центрального тела, R – радиус орбиты, vp – параболическая скорость.

13. Эксцентриситет эллиптической орбиты, характеризующий степень отклонение эллипса от окружности:

, где c – расстояние от фокуса до центра орбиты, a – большая полуось орбиты, b – малая полуось орбиты.

14. Связь расстояний перицентра и апоцентра с большой полуосью и эксцентриситетом эллиптической орбиты:

, , , где rП – расстояния от фокуса, в котором находится центральное небесное тело, до перицентра, rА – расстояния от фокуса, в котором находится центральное небесное тело, до апоцентра, a – большая полуось орбиты, e – эксцентриситет орбиты.

15. Расстояние до светила (в пределах Солнечной системы):

, где R – экваториальный радиус Земли, ρ0– горизонтальный параллакс светила, выраженный в секундах дуги,

или , где D1 и D2 – расстояния до светил, ρ1 и ρ2 – их горизонтальные параллаксы.

16. Радиус светила:

, где ρ – угол, под которым с Земли виден радиус диска светила (угловой радиус), R – экваториальный радиус Земли, ρ0– горизонтальный параллакс светила.


17. Расстояние до звезд:

в парсеках: , где – годичный параллакс звезды, выраженный в радианах;

в астрономических единицах: , где – годичный параллакс звезды, выраженный в секундах дуги;

в километрах: , где – годичный параллакс звезды, выраженный в секундах дуги, a – средний радиус (большая полуось) земной орбиты.

18. Связь блеска звезды и ее звездной величины (формула Погсона):

, где I1 – освещенность, создаваемая звездой, звездная величина которой равна m1, и I2 – освещенность, создаваемая другой звездой, звездная величина которой равна m2.

19. Абсолютная звездная величина:

, где m – видимая звездная величина, R – расстояние до звезды в парсеках.

20. Закон Стефана–Больцмана:

ε=σT4, где ε – энергия, излучаемая в единицу времени с единицы поверхности, Т – температура (в кельвинах), а σ – постоянная Стефана–Больцмана.

21. Закон Вина:

, где λmax – длина волны, на которую приходится максимум излучения абсолютно черного тела (в сантиметрах), Т – абсолютная температура в кельвинах.

22. Закон Хаббла:

, где v – лучевая скорость удаления галактики, c – скорость света, Δλ – доплеровское смещение линий в спектре, λ – длина волны источника излучения, z – красное смещение, r – расстояние до галактики в мегапарсеках, H – постоянная Хаббла, равная 75 км / (сМпк).

4