Выполнил ученик 10 «Б» класса: Авилкин Сергей
Презентация на тему:
Тепловая машина и КПД.
Тепловая машина- это…
устройство, преобразующее тепловую энергию в механическую работу или механическую работу в тепло. Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела — на практике обычно пара или газа.
Идеальная тепловая машина- это…
машина, в которой произведённая работа и разница между количеством подведённого и отведённого тепла равны. Работа идеальной тепловой машины описывается циклом Карно.
Тепловая энергия- это…
Это форма энергии, связанная с движением атомов, молекул или других частиц, из которых состоит тело. По сути, тепловая энергия — это суммарная кинетическая энергия структурных элементов вещества (будь то атомы, молекулы или заряженные частицы). Тепловая энергия системы плюс потенциальная энергия межатомных взаимодействий называется внутренней энергией системы.
Механическая работа- это…
Это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины и направления силы (сил) и от перемещения точки (точек) тела или системы.
Рабочее тело- это…
В теплотехнике и термодинамике условное несменяемое материальное тело, расширяющееся при подводе к нему теплоты и сжимающееся при охлаждении и выполняющее работу по перемещению рабочего органа тепловой машины. В теоретических разработках рабочее тело обычно обладает свойствами идеального газа.
Цикл Карно- это…
идеальный термодинамический цикл. Тепловая машина Карно , работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.
История создания тепловых машин.
Создание и развитие термодинамики было вызвано, прежде всего, необходимостью описания работы и расчета тепловых машин . Первыми тепловыми машинами были паровые двигатели, замкнутый термодинамический цикл которых впервые был описан в 1690 году Дени Папином (1647-1712). Первые тепловые двигатели предназначались для подъема воды из шахт и были изобретены английскими инженерами в 1698 году Томасом Севери (1650 - 1715) и в 1712 году Томасом Ньюкоменом (1663 - 1715). Если в насосе Севери использовался пар в качестве тела, непосредственно толкающего воду, то машина Ньюкомена была первой поршневой паровой машиной. Отметим, что идея использования поршня принадлежит Папину.
Широкое применение паровых машин в промышленности началось после изобретения в 1774 году Джеймсом Уаттом (1736 - 1819) паровой машины, в которой работа совершалась без использования атмосферного давления, что значительно сократило расход топлива. Уатт дополнил свои машины важнейшими механическими изобретениями, такими как преобразователь поступательного движения во вращательное, центробежный регулятор, маховое колесо и т.д. В 1784 году Уатт запатентовал универсальную паровую машину двойного действия, в которой пар совершал работу по обе стороны поршня.
Сейчас разработано большое количество разнообразных тепловых машин, в которых реализованы различные термодинамические циклы. Тепловыми машинами являются двигатели внутреннего сгорания, реактивные двигатели, различные тепловые турбины и т.д.
Тепловые машины или тепловые двигатели предназначены для получения полезной работы за счет теплоты, выделяемой вследствие химических реакций (сгорание топлива), ядерных превращений или по другим причинам (например, вследствие нагрева солнечными лучами). На рис. 3.1 приведена условная схема тепловой машины. Для функционирования тепловой машины обязательно необходимы следующие составляющие: нагреватель , холодильник и рабочее тело . При этом, если необходимость в наличии нагревателя и рабочего тела обычно не вызывает сомнений, то холодильник как составная часть тепловой машины в её конструкции зачастую отсутствует. В качестве холодильника выступает окружающая среда.
Строение тепловой машины.
ВПУСКНОЙ КЛАПАН
ВЫПУСКНОЙ КЛАПАН
СВЕЧА
ПОРШЕНЬ
ШАТУН
ЦИЛИНДР
Термодинамический цикл тепловой машины.
Принцип действия тепловых машин заключается в следующем. Нагреватель передает рабочему телу теплоту , вызывая повышение его температуры. Рабочее тело совершает работу над каким-либо механическим устройством, например, приводит во вращение турбину, и далее отдает холодильнику теплоту , возвращаясь в исходное состояние. Величина представляет собой количество теплоты, передаваемое холодильником рабочему телу, и имеет отрицательное значение.
Отметим, что наличие холодильника и передача ему части полученной от нагревателя теплоты, является обязательным, так как иначе работа тепловой машины невозможна. Действительно, для получения механической работы необходимо наличие потока, в данном случае потока теплоты. Если же холодильник будет отсутствовать, то рабочее тело неизбежно придет в тепловое равновесие с нагревателем, и поток теплоты прекратится.
В соответствии с первым началом термодинамики , при осуществлении кругового процесса, из-за возвращения рабочего тела в исходное состояние, его внутренняя энергия за цикл не изменяется. Поэтому совершенная рабочим телом механическая работа равна разности подведенной и отведенной теплоты:
Тепловой коэффициент полезного действия (к.п.д.) цикла любой тепловой машины можно рассчитать как отношение полезной работы к количеству теплоты , переданной от нагревателя:
Из выражения следует, что к.п.д. любой тепловой машины всегда меньше единицы , так как часть полученной от нагревателя теплоты должна передаваться холодильнику.
Термодинамический цикл, осуществляемый в обратном направлении, может быть использован для работы холодильной машины.
Характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η (« эта»). η = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:
где А — полезная работа, а Q — затраченная работа.
Так же КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя, к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле:
где Q 1 — количество теплоты, полученное от нагревателя, Q 2 — количество теплоты, отданное холодильнику. Наибольшим КПД обладают тепловые двигатели, работающие по циклу Карно .