СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Организационный момент
Проверка знаний
Объяснение материала
Закрепление изученного
Итоги урока
Нейромережі не можна вважати рішенням для всіх обчислювальних проблем. Традиційні комп'ютери та обчислювальні методи є ідеальними для багатьох застосувань. Сучасні цифрові обчислювальні машини перевершують людину по здатності робити числові і символьні обчислення. Однак людина може без зусиль вирішувати складні задачі сприйняття зовнішніх даних (наприклад, впізнавання людини в юрбі по його обличчю) з такою швидкістю і точністю, що наймогутніший у світі комп'ютер у порівнянні з ним здається безнадійним тугодумом. У чому причина настільки значного розходження в їхній продуктивності?
Представимо деякі проблеми, розв'язувані в контексті нейромоделювання, які представляють інтерес для вчених і інженерів.
Класифікація образів. Завдання полягає у визначенні приналежності вхідного образа (наприклад, мовного сигналу чи рукописного символу), представленого вектором ознак, одному чи декільком попередньо визначеним класам. До відомих застосувань відносяться розпізнавання букв, розпізнавання мови, класифікація сигналу електрокардіограми, класифікація кліток крові.
Кластеризація/категоризація. При рішенні задачі кластеризації, що відома також як класифікація образів "без вчителя", навчальна множина з визначеними класами відсутня. Алгоритм кластеризації заснований на подобі образів і розміщує близькі образи в один кластер. Відомі випадки застосування кластеризації для видобутку знань, стиснення даних і дослідження властивостей даних.
Оптимізація. Численні проблеми в математиці, статистиці, техніці, науці, медицині й економіці можуть розглядатися як проблеми оптимізації. Задачею алгоритму оптимізації є знаходження такого рішення, що задовольняє системі обмежень і максимізує чи мінімізує цільову функцію.
Пам'ять, що адресується за змістом. В традиційних комп'ютерах звертання до пам'яті доступно тільки за допомогою адреси, що не залежить від змісту пам'яті. Більш того, якщо допущена помилка в обчисленні адреси, то може бути знайдена зовсім інша інформація. Асоціативна пам'ять, чи пам'ять, що адресується за змістом, доступна за вказівкою заданого змісту. Вміст пам'яті може бути викликано навіть по частковому входу чи спотвореному змісту. Асоціативна пам'ять надзвичайно бажана при створенні мультимедійних інформаційних баз даних.
Але, незважаючи на переваги нейронних мереж в часткових галузях над традиційними обчисленнями, існуючі нейромережі є не досконалими рішеннями. Вони навчаються і можуть робити "помилки". Окрім того, не можна гарантувати, що розроблена мережа є оптимальною мережею. Застосування нейромереж вимагає від розробника виконання ряду умов.
Ці умови включають:
множину даних, що включає інформацію, яка може характеризувати проблему;
відповідно встановлену за розміром множину даних для навчання і тестування мережі;
розуміння базової природи проблеми, яка буде вирішена;
вибір функції суматора, передатної функції та методів навчання;
розуміння інструментальних засобів розробника;
відповідна потужність обробки.
Новий шлях обчислень вимагає вмінь розробника поза межами традиційних обчислень. Спочатку, обчислення були лише апаратними і інженери робили його працюючим. Потім, були спеціалісти з програмного забезпечення: програмісти, системні інженери, спеціалісти по базах даних та проектувальники. Тепер є нейронні архітектори. Новий професіонал повинен мати кваліфікацію відмінну від його попередників. Наприклад, він повинен знати статистику для вибору і оцінювання навчальних і тестових множин. Логічне мислення сучасних інженерів програмного забезпечення, їх емпіричне вміння та інтуїтивне відчуття гарантує створення ефективних нейромереж.
Можна стверджувати, що “штучний” інтелект у тому чи іншому розумінні повинен наближатися до інтелекту природного і у ряді випадків використовуватися замість нього; так само, як, наприклад, штучні нирки працюють замість природних. Чим більше буде ситуацій, у яких штучні інтелектуальні системи зможуть замінити людей, тим більш інтелектуальними будуть вважатися ці системи.
Центральні задачі ШІ полягають в тому, щоб зробити ОМ більш корисними і щоб зрозуміти принципи, що лежать в основі інтелекту. Оскільки одна із задач полягає в тому, щоб зробити ОМ більш корисними, вченим і інженерам, що спеціалізуються в обчислювальній техніці, необхідно знати, яким чином ШІ може допомогти їм в розв"язку важких проблем.
Досліджувана тема стає все більш актуальною, оскільки область застосування систем штучного інтелекту поширюється в різних галузях і включає: доведення теорем; ігри; розпізнавання образів; прийняття рішень; адаптивне програмування; створення машинної музики; обробка даних природною мовою; мережі, що навчаються (нейромережі); вербальні концептуальні навчання та ін.
-80%
© 2015, Лагодная Диана Олеговна 553