СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 11.05.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Бесконечно убывающая геометрическая прогрессия

Категория: Математика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Бесконечно убывающая геометрическая прогрессия»

Бесконечно убывающая геометрическая прогрессия (открываем презентацию)

Слайд №2. Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего.


В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например,

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.


С помощью этого рисунка можно рассмотреть и ещё одну последовательность. Например, последовательность площадей квадратов:

И, опять, если n неограниченно возрастает, то площадь, как угодно близко приближается к нулю.

Слайд №3. Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников.

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.


То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Записать определение: геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.


С помощью определения можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Задача №1.

Является ли последовательность бесконечно убывающей геометрической прогрессией, если она задана формулой:

а)

Решение:

а)

данная геометрическая прогрессия является бесконечно убывающей.

б)

данная последовательность не является бесконечно убывающей геометрической прогрессией.

Продолжить работу с презентацией.

Слайд №4.Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию:

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

Но в левой части этого равенства – сумма бесконечного числа слагаемых.

Рассмотрим сумму n первых слагаемых.


По формуле суммы n первых членов геометрической прогрессии, она равна

Если n неограниченно возрастает, то

Слайд №5. Записать определение. Суммой бесконечно убывающей геометрической прогрессии называют число, к которому стремится сумма её первых n членов при n → ∞. Теперь получим формулу, с помощью которой будем вычислять сумму бесконечно убывающей геометрической прогрессии.

Рассмотрим формулу n первых членов геометрической прогрессии.


Тренировочные упражнения.


Задача №2. Найти сумму бесконечно убывающей геометрической прогрессии с первым членом 3,вторым 0,3.

Решение:



Задача №3. Найти сумму бесконечно убывающей геометрической прогрессии:

Решение:

Задача №4. Найти сумму бесконечно убывающей геометрической прогрессии, если

Решение:

Пользуясь формулой суммы бесконечно убывающей геометрической прогрессии, можно записывать бесконечную периодическую десятичную дробь в виде обыкновенной дроби.

Задача №5. Записать бесконечную периодическую десятичную дробь 0,(5) в виде обыкновенной дроби.


1-й способ. Пусть х=0,(5)= 0,555… /•10 2-й способ. 0,(5)=0,555…=



Задача №6. Записать бесконечную периодическую десятичную дробь 0,(12) в виде обыкновенной дроби.



Ответ: 0,(12)= 4/33.




Скачать

© 2022 1378 34

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!

Закрыть через 4 секунд
Комплекты для работы учителя