СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Биосинтез белков

Категория: Биология

Нажмите, чтобы узнать подробности

Каждая клетка содержит тысячи белков. Свойства белков определяются их первичной структурой, т. е. последовательностью аминокислот в их молекулах.

 

В свою очередь наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекуле ДНК. Эта информация получила название генетической, а участок ДНК, в котором содержится информация о первичной структуре одного белка, называется ген.

Ген — это участок ДНК, в котором содержится информация о первичной структуре одного белка.

Ген — это единица наследственной информации организма.

 

Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Биосинтез белка

Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определённую последовательность аминокислот в белковых молекулах.

Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.

 

 

Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.

Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до 60 тыс. пептидных связей.

Транскрипция

Транскрипция — это процесс снятия информации с молекулы ДНК синтезируемой на ней молекулой иРНК (мРНК).

Носителем генетической информации является ДНК, расположенная в клеточном ядре.

 

В ходе транскрипции участок двуцепочечной ДНК «разматывается», а затем на одной из цепочек синтезируется молекула иРНК.

 

 

Информационная (матричная) РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности.

 

 

Формируется цепочка иРНК, представляющая собой точную копию второй (нематричной) цепочки ДНК (только вместо тимина включён урацил). Так информация о последовательности аминокислот в белке переводится с «языка ДНК» на «язык РНК».

Как и в любой другой биохимической реакции, в этом синтезе участвует фермент — РНК-полимераза.

Так как в одной молекуле ДНК может находиться множество генов, очень важно, чтобы РНК-полимераза начала синтез иРНК со строго определённого места ДНК. Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором. РНК-полимераза «узнаёт» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки иРНК с нужного места.

 

Фермент продолжает синтезировать иРНК до тех пор, пока не дойдёт до очередного «знака препинания» в молекуле ДНК — терминатора (это последовательность нуклеотидов, указывающая на то, что синтез иРНК нужно прекратить).

У прокариот синтезированные молекулы иРНК сразу же могут взаимодействовать с рибосомами и участвовать в синтезе белков.

У эукариот иРНК синтезируется в ядре, поэтому сначала она взаимодействует со специальными ядерными белками и переносится через ядерную мембрану в цитоплазму.

Трансляция 

Трансляция — это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

В цитоплазме клетки обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, а некоторые могут синтезироваться в самом организме.

 

Обрати внимание!

Аминокислоты доставляются к рибосомам транспортными РНК (тРНК). Любая аминокислота может попасть в рибосому, только прикрепившись к специальной тРНК.

На тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 секунды.

 

За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Аминокислота, которая была связана с этой тРНК, отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК (антикодон которой комплементарен следующему триплету в иРНК), и следующая аминокислота  включается в растущую цепочку.

Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной молекулы оказывается рядом с аминогруппой другой молекулы. В результате между ними образуется пептидная связь.

 

Рибосома постепенно сдвигается по иРНК, задерживаясь на следующих триплетах. Так постепенно формируется молекула полипептида (белка).

 

Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трёх стоп-кодонов (УАА, УАГ или УГА). После этого белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры.

 

Так как клетке необходимо много молекул каждого белка, то как только рибосома, первой начавшая синтез белка на иРНК, продвинется вперёд, за ней на ту же иРНК нанизывается вторая рибосома. Затем на иРНК последовательно нанизываются следующие рибосомы.

 

Все рибосомы, синтезирующие один и тот же белок, закодированный в данной иРНК, образуют полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых молекул белка.

 

Когда синтез данного белка окончен, рибосома может найти другую иРНК и начать синтезировать другой белок.

 

Общая схема синтеза белка представлена на рисунке.

 

Пример:

последовательность нуклеотидов матричной цепи ДНК: ЦГА  ТТА  ЦАА. На информационной РНК (иРНК) по принципу комплементарности будет синтезирована цепь ГЦУ  ААУ  ГУУ, в результате чего выстроится цепочка аминокислот: аланин — аспарагин — валин.

 

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а следовательно, изменится и белок, кодируемый данным геном.

Изменения в составе нуклеотидов или их последовательности называются мутациями

Просмотр содержимого документа
«Биосинтез белков»

Выучить лекцию, распечатать! Будет опрос в среду !

Каждая клетка содержит тысячи белков. Свойства белков определяются их первичной структурой, т. е. последовательностью аминокислот в их молекулах.

 

В свою очередь наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекуле ДНК. Эта информация получила название генетической, а участок ДНК, в котором содержится информация о первичной структуре одного белка, называется ген.

Ген — это участок ДНК, в котором содержится информация о первичной структуре одного белка.

Ген — это единица наследственной информации организма.

 

Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Биосинтез белка

Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определённую последовательность аминокислот в белковых молекулах.

Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.

 

 

Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.


Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до 60 тыс. пептидных связей.

Транскрипция

Транскрипция — это процесс снятия информации с молекулы ДНК синтезируемой на ней молекулой иРНК (мРНК).

Носителем генетической информации является ДНК, расположенная в клеточном ядре.

 

В ходе транскрипции участок двуцепочечной ДНК «разматывается», а затем на одной из цепочек синтезируется молекула иРНК.

 

 

Информационная (матричная) РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности.

 

 

Формируется цепочка иРНК, представляющая собой точную копию второй (нематричной) цепочки ДНК (только вместо тимина включён урацил). Так информация о последовательности аминокислот в белке переводится с «языка ДНК» на «язык РНК».


Как и в любой другой биохимической реакции, в этом синтезе участвует фермент — РНК-полимераза.


Так как в одной молекуле ДНК может находиться множество генов, очень важно, чтобы РНК-полимераза начала синтез иРНК со строго определённого места ДНК. Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором. РНК-полимераза «узнаёт» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки иРНК с нужного места.

 

Фермент продолжает синтезировать иРНК до тех пор, пока не дойдёт до очередного «знака препинания» в молекуле ДНК — терминатора (это последовательность нуклеотидов, указывающая на то, что синтез иРНК нужно прекратить).


У прокариот синтезированные молекулы иРНК сразу же могут взаимодействовать с рибосомами и участвовать в синтезе белков.


У эукариот иРНК синтезируется в ядре, поэтому сначала она взаимодействует со специальными ядерными белками и переносится через ядерную мембрану в цитоплазму.

Трансляция 

Трансляция — это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

В цитоплазме клетки обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, а некоторые могут синтезироваться в самом организме.

 

Обрати внимание!

Аминокислоты доставляются к рибосомам транспортными РНК (тРНК). Любая аминокислота может попасть в рибосому, только прикрепившись к специальной тРНК.

На тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 секунды.

 

За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Аминокислота, которая была связана с этой тРНК, отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК (антикодон которой комплементарен следующему триплету в иРНК), и следующая аминокислота  включается в растущую цепочку.


Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной молекулы оказывается рядом с аминогруппой другой молекулы. В результате между ними образуется пептидная связь.


 

Рибосома постепенно сдвигается по иРНК, задерживаясь на следующих триплетах. Так постепенно формируется молекула полипептида (белка).

 

Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трёх стоп-кодонов (УАА, УАГ или УГА). После этого белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры.

 

Так как клетке необходимо много молекул каждого белка, то как только рибосома, первой начавшая синтез белка на иРНК, продвинется вперёд, за ней на ту же иРНК нанизывается вторая рибосома. Затем на иРНК последовательно нанизываются следующие рибосомы.

 

Все рибосомы, синтезирующие один и тот же белок, закодированный в данной иРНК, образуют полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых молекул белка.

 

Когда синтез данного белка окончен, рибосома может найти другую иРНК и начать синтезировать другой белок.

 

Общая схема синтеза белка представлена на рисунке.

 

Пример:

последовательность нуклеотидов матричной цепи ДНК: ЦГА  ТТА  ЦАА.
На информационной РНК (иРНК) по принципу комплементарности будет синтезирована цепь 
ГЦУ  ААУ  ГУУ, в результате чего выстроится цепочка аминокислот: аланин — аспарагин — валин.

При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а следовательно, изменится и белок, кодируемый данным геном.

Изменения в составе нуклеотидов или их последовательности называются мутациями

Био­син­тез – это про­цесс со­зда­ния слож­ных ор­га­ни­че­ских ве­ществ в ходе био­хи­ми­че­ских ре­ак­ций, про­те­ка­ю­щих с по­мо­щью фер­мен­тов.

Этот процесс всегда происходит с по­гло­ще­ни­ем энер­гии. На­при­мер, об­ра­зо­ва­ние по­ли­са­ха­ри­дов из мо­но­са­ха­ри­дов, об­ра­зо­ва­ние бел­ков из ами­но­кис­лот, об­ра­зо­ва­ние нук­ле­и­но­вых кис­лот из нук­лео­ти­дов. Энер­гию поставляет мо­ле­ку­ла АТФ (аде­но­з­ин­три­фос­фор­ная кис­ло­та), которая со­дер­жит мак­ро­энер­ге­ти­че­ские связи (рис. 1).

Рис. 1. Аде­но­з­ин­три­фос­фор­ная кис­ло­та (Источник

При гид­ро­ли­зе вы­де­ля­ет­ся энер­гия, она ис­поль­зу­ет­ся для обес­пе­че­ния про­цес­сов био­син­те­за. В био­син­те­зе мо­ле­кул белка участ­ву­ют ами­но­кис­ло­ты, фер­мен­ты, ри­бо­со­мы, мо­ле­ку­лыРНК (ри­бо­сом­ные, транс­порт­ные, ин­фор­ма­ци­он­ные).

По­ли­пеп­тид­ные цепи, или мо­ле­кулы белка, создаются на ри­бо­со­мах ци­то­плаз­мы. Био­син­тез за­ви­сит от участ­ка ДНК в опре­де­лен­ном месте хро­мо­со­мы (гене). Гены со­дер­жат ин­фор­ма­цию об оче­ред­но­сти ами­но­кис­лот во время син­те­за белка, ко­ди­ру­ют его пер­вич­ную струк­ту­ру.

Суть ге­не­ти­че­ско­го кода

Ин­фор­ма­ция о каж­дой ами­но­кис­ло­те за­пи­са­на в ком­би­на­ции из трех нук­лео­ти­дов (три­пле­тов) – одну ами­но­кис­ло­ту ко­ди­ру­ют три нук­лео­ти­да(рис. 2).

Рис. 2. Таблица генетического кода (Источник

Ге­не­ти­че­ский код уни­вер­са­лен, оди­на­ков для всех живых ор­га­низ­мов. Мо­ле­ку­лы ин­фор­ма­ци­он­ной РНК пе­ре­но­сят­ся в ци­то­плаз­му клет­ки. Три­пле­ты ин­фор­ма­ци­он­ной РНК на­зы­ва­ют ко­до­на­ми.

Схе­ма­ про­цесса био­син­те­за (рис. 3)

Рис. 3. Процесс биосинтеза (Источник

Дан­ные, по­лу­чен­ные экспериментально, по­ка­за­ли, что био­син­тез белка со­сто­ит из двух эта­пов: тран­скрип­ции, транс­ля­ции.

Тран­скрип­ци­я

Транскрипция – ме­ха­низм, с по­мо­щью ко­то­ро­го нук­лео­тид­ная по­сле­до­ва­тель­ность одной из цепей молекулы  ДНК пе­ре­пи­сы­ва­ет­ся в ком­пле­мен­тар­ную по­сле­до­ва­тель­ность в виде мо­ле­ку­лы ин­фор­ма­ци­он­ной РНК (рис. 4).

Рис. 4. Транскрипция (Источник

Второе определение. Транскрипция – про­цесс син­те­за ин­фор­ма­ци­он­ной РНК, в ко­то­ром в ка­че­стве мат­ри­цы ис­поль­зу­ет­ся одна из цепей мо­ле­ку­лы ДНК.

Про­цесс тран­скрип­ции

Спе­ци­аль­ный фер­мент на­хо­дит на молекуле ДНК требуемый ген и копирует его, рас­кру­чи­ва­я уча­сток двой­ной спи­ра­ли ДНК (рис. 5).

Рис. 5. Раскручивается участок двойной спирали (Источник

Фер­мент пе­ре­ме­ща­ет­ся вдоль цепи ДНК и стро­ит цепь ин­фор­ма­ци­он­ной РНК в со­от­вет­ствии с прин­ци­пом ком­пле­мен­тар­но­сти. По мере дви­же­ния фер­мен­та рас­ту­щая цепь информационной РНК от­хо­дит от ДНК мат­ри­цы, а двой­ная спираль ДНК вос­ста­нав­ли­ва­ет­ся. Когда фер­мент до­сти­га­ет конца ко­пи­ро­ва­ния участ­ка, на­зы­ва­е­мо­го стоп-ко­до­ном, мо­ле­ку­ла РНК от­де­ля­ет­ся от мат­ри­цы, т. е. от мо­ле­ку­лы ДНК. Тран­скрип­ция – это пер­вый этап био­син­те­за белка. На этом этапе про­ис­хо­дит счи­ты­ва­ние ин­фор­ма­ции путем син­те­за ин­фор­ма­ци­он­ной РНК.

Транс­ля­ция

Транс­ля­ции – механизм, с помощью которого  нук­лео­тид­ные по­сле­до­ва­тель­но­сти ин­фор­ма­ци­он­ной РНК пе­ре­во­дят­ся в по­сле­до­ва­тель­ность ами­но­кис­лот в мо­ле­ку­ле по­ли­пеп­тид­ной цепи. Про­цесс идет в ци­то­плаз­ме на ри­бо­со­мах. Об­ра­зо­вав­ши­е­ся ин­фор­ма­ци­он­ные РНК вы­хо­дят из ядра через поры и от­прав­ля­ют­ся к ри­бо­со­мам. Ри­бо­со­ма сколь­зит по РНК и вы­стра­и­ва­ет из опре­де­лен­ных ами­но­кис­лот длин­ную по­ли­мер­ную цепь белка. Ами­но­кис­ло­ты до­став­ля­ют­ся к ри­бо­со­мам с по­мо­щью транс­порт­ных РНК. Для каж­дой ами­но­кис­ло­ты тре­бу­ет­ся своя транс­порт­ная РНК, со­от­вет­ству­ю­щая опре­де­лен­но­му три­пле­ту ин­фор­ма­ци­он­ной РНК (ко­до­ну). В мо­ле­ку­ле транс­порт­ной РНК, ко­то­рая имеет форму три­лист­ни­ка, имеется два участка – акцепторный и триплетный антикодон. К акцепторному участку при­со­еди­ня­ет­ся ами­но­кис­ло­та, а три­плет­ный ан­ти­ко­дон свя­зы­ва­ет­ся с ком­пле­мен­тар­ным ко­до­ном в мо­ле­ку­ле ин­фор­ма­ци­он­ной РНК (рис. 6).

Рис. 6. тРНК (Источник

Це­поч­ка ин­фор­ма­ци­он­ной РНК обес­пе­чи­ва­ет опре­де­лен­ную по­сле­до­ва­тель­ность ами­но­кис­лот в це­поч­ке мо­ле­ку­лы белка. Жизнь ин­фор­ма­ци­он­ной РНК – от 2 минут (у неко­то­рых бак­те­рий) до несколь­ких дней (как, на­при­мер, у выс­ших мле­ко­пи­та­ю­щих). Затем ин­фор­ма­ци­он­ная РНК раз­ру­ша­ет­ся под дей­стви­ем фер­мен­тов, а нук­лео­ти­ды ис­поль­зу­ют­ся для син­те­за новой мо­ле­ку­лы ин­фор­ма­ци­он­ной РНК. Таким об­ра­зом, клет­ка кон­тро­ли­ру­ет ко­ли­че­ство син­те­зи­ру­е­мых бел­ков и их тип.

Заключение

Биосин­тез белка со­сто­ит из двух эта­пов: тран­скрип­ция (об­ра­зо­ва­ние ин­фор­ма­ци­он­ной РНК по мат­ри­це ДНК, про­те­ка­ет в ядре клет­ки) и транс­ля­ция (эта ста­дия про­хо­дит в ци­то­плаз­ме клет­ки на ри­бо­со­мах).

Биосинтез белка – важная часть пластического обмена всех клеток. Рассматривает данный процесс наука биология. В результате образуются специфичные вещества, характерные для данного организма. Происходит воспроизведение наследственной информации. Последовательность процессов биосинтеза белка Образование белка является многоступенчатым процессом.  Чтобы запустить реакции образования вещества, осуществляется целый ряд последовательных событий: Транскрипция - это реакции переписывания наследственной информации с макромолекулы ДНК на матричную РНК. Ее называют также информационной. Краткое обозначение: м-РНК, и-РНК. Процесс протекает в ядре клетки. Перемещение и-РНК к месту синтеза белка. Трансляция - это перенос информации о чередовании нуклеотидов м-РНК на макромолекулу белка. Процесс идёт вне ядра. Где происходит синтез белка Образование высокомолекулярного соединения протекает в цитоплазме. Именно здесь находятся органоиды, на которых осуществляется данный процесс. Рибосома представляет собой две части: малую и большую. Чтобы биосинтез белка начался, необходимо доставить информацию из ядра в цитоплазму. Ядро эукариот хранит информацию о первичной структуре природных полимеров. Её называют наследственной. Эта важная информация должна быть без искажения перенесена к месту синтеза белка. С этой целью в ядре идут матричные реакции. На одной из цепей ДНК синтезируется и-РНК. Именно она является посредником между двумя частями клетки. Этапы биосинтеза белка Транскрипция Процесс протекает в ядре. ДНК образована большим количеством нуклеотидов. Это единица макромолекулы. Она включает в свой состав 3 компонента: углевод, представленный пентозой – дезоксирибозой; минеральную кислоту – фосфорную; органическое соединение, относящееся к классу азотистых оснований. В составе ДНК могут содержаться 4 разных основания. Они имеют краткое обозначение, по первой букве названия: А – аденин; Г – гуанин; Ц – цитозин; Т – тимин. Именно этими основаниями и отличаются нуклеотиды. Чередование 3 нуклеотидов образует триплет. Один триплет соответствует одной аминокислоте. Вопрос соответствия аминокислот триплетам изучен и указан в таблице генетического кода. Последовательность триплетов в молекуле дезоксирибонуклеиновой кислоты, отвечающей за синтез одного белка, называют геном. Между разными генами расположены триплеты, которые не соответствуют аминокислотам. Их называют стоп-кодонами. Они служат сигналом начала и окончания гена. Для осуществления транскрипции, участок макромолекулы ДНК раскручивается. Он выполняет роль матрицы. На нём выстраивается и-РНК. Осуществляется синтез по принципу соответствия. Еще его называют комплементарностью. РНК также имеет нуклеотидное строение. Вместо дезоксирибозы присутствует углевод рибоза. Содержится остаток ортофосфорной кислоты. Третьим компонентом является азотистое основание. Три основания одинаковые – А, Г, Ц в ДНК и РНК. Четвертое основание рибонуклеиновой кислоты – урацил (У). Комплементарными основаниями являются: Т – А, А – У, Г – Ц, Ц – Г. В парах комплементарных оснований первое соответствует ДНК, второе – РНК. Таким образом, на макромолекуле ДНК по принципу соответствия выстраивается и-РНК. В дальнейшем цепь РНК транспортируется через ядерную мембрану к месту синтеза белка. Трансляция Процесс идет на органоидах – рибосомах. Они нанизываются на цепь и-РНК, передвигаются по ней не плавно, а прерывисто. Располагаются таким образом, что внутри рибосомы находится полностью 1-2 триплета. На одну РНК может одновременно нанизываться большое количество рибосом. В процессе принимают участие т-РНК. Они имеют пространственную структуру, принимают форму трилистника. Верхняя часть листа, то есть молекулы, содержит антикодон. Это триплет, распознающий кодон (один триплет) и-РНК. Каждая т-РНК транспортирует к рибосоме строго определенную аминокислоту. Если триплет-антикодон т-РНК распознает триплет-кодон и-РНК, тогда аминокислота встраивается в макромолекулу белка. Следующая т-РНК подтаскивает другую аминокислоту, снова идет процесс распознавания. В данном случае также идет матричный процесс сборки белка. РНК служит матрицей для синтеза белка. Как только белковая молекула синтезирована, она освобождается от рибосомы. Правильное чередование аминокислот в макромолекуле образует первичную структуру белковой молекулы. Она является определяющей, поэтому так важен матричный синтез белков. Другие структуры белковые макромолекулы приобретают самопроизвольно. Схема биосинтеза белка Процессы, ведущие к синтезу белка, можно кратко изобразить на схеме: Первый этап – реакции, идущие в кариоплазме. Раскручивание ДНК. Транскрипция. Образование м-РНК. Второй этап – транспорт м-РНК к рибосомам. Третий этап – реакции, идущие в цитоплазме. Трансляция. Биосинтез белковой молекулы, протекающий при участии РНК, клеточных органоидов – рибосом



Скачать

Рекомендуем курсы ПК и ППК для учителей