СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Буклет "Методы решения логических задач"

Категория: Математика

Нажмите, чтобы узнать подробности

Буклет сотавлен в помощь школьникам по решению логических задач при выполнении исследовательской работы.

Просмотр содержимого документа
«Буклет "Методы решения логических задач"»

Метод бильярда

Метод блок-схем

МБОУ «Дульдургинская средняя

общеобразовательная школа»

МОУ "Дульдургинская средняя

общеобразовательная школа"

ДСОШ

Идея метода: описать последовательность выполнения операций, определить порядок их выполнения и фиксировать состояния .

Идея метода: нарисовать бильярдный стол интерпретировать действия движениями бильярдного шара, фиксирование в состояний в отдельной таблице.

Пример : Среди четырех монет одна фальшивая. Она отличается массой, однако неизвестно, легче она или тяжелее. Масса настоящей монеты 5 г. Как при помощи двух взвешиваний на чашечных весах обнаружить фальшивую монету, если имеется одна гиря массой 5 г? Можно ли при этих условиях опознать, легче фальшивая монета или тяжелее?

Решение: Пусть m1, m2, m3, m4 – массы четырех монет соответственно, Г - масса гири. Оформим решение в виде блок-схемы. Приведенная схема задает программу, осуществление которой позволяет установить фальшивую монету и определить, легче она или тяжелее. Взвешиваниям в блок-схеме соответствуют прямоугольники - операторы условного перехода. В схеме выделены первое и второе взвешивания горизонтальными линиями .

Методы решения

логических задач

Пример: Имеются два сосуда — трехлитровый и пятилитровый. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4, 5, 6, 7 и 8 литров воды. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду.

Решение.  В рассматриваемой задаче стороны параллелограмма должны иметь длины 3 и 5 единиц. По горизонтали будем откладывать количество воды в литрах в 5-литровом сосуде, а по вертикали – в 3-литровом сосуде. На всем параллелограмме нанесена сетка из одинаковых равносторонних треугольников.

Наранова Саяна

ученица 7 класса

Преимущества метода

Наглядность

Привлекательность идеи бильярда

Возможность обобщить метод на широкий класс задач

Преимущества метода

Наглядность

Значительно упрощается оформление решения задачи

2015 год

Метод рассуждений

Метод таблиц

Метод кругов Эйлера

Идея метода : состоит в том, что мы проводим рассуждения, используя последовательно все условия задачи, и приходим к выводу, который и будет являться ответом задачи.

Идея метода: Оформлять результаты логических рассуждений в виде таблицы

Идея метода : Определить количество элементов, обладающих общими свойствами.

Пример : Владимир, Игорь и Сергей преподают математику, физику и литературу, а живут они в Рязани, Туле и Ярославле. Известно также, что Владимир живет не в Рязани, Игорь живет не в Туле, рязанец – не физик, Игорь – не математик, туляк преподает литературу. Кто где живет и что преподает?

Решение. Составим таблицу 3 х 3, выбрав основными параметрами имена и города. Тогда, учитывая, что рязанец – не физик, а туляк – литератор, получаем, что рязанец – математик, а житель Ярославля – физик.

Ответ: Сергей живет в Рязани – он математик, Владимир живет в Туле – он преподает литературу, Игорь живет в Ярославле – он физик.

Пример : Коренными жителями острова являются рыцари света и рыцари тьмы. Рыцари света всегда говорят правду, а рыцари тьмы всегда лгут. Рыцарь А говорит: «Я – лжец». Является ли он уроженцем острова рыцарей света и рыцарей тьмы?

Решение:

Пусть А сказал правду, значит, он – рыцарь тьмы. Но он не может быть рыцарем тьмы, так как рыцари тьмы всегда лгут. Пусть А сказал ложь, тогда он рыцарь света. Но рыцари света говорят правду. Опять не получается. Значит, А не может быть уроженцем острова рыцарей света и рыцарей тьмы.

Ответ: А не является уроженцем острова.

Пример : На полке стояло 26 волшебных книг по заклинаниям, все они были прочитаны. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. Всего Гарри Поттер прочитал 11 книг. Сколько книг прочитал только Рон?

Решение: По условию задачи нарисуем чертёж.Так как Гарри Поттер всего прочитал 11 книг, из них 4 книги читал Рон и 2 книги – Гермиона, то 11 – 4 – 2 = 5 – книг прочитал только Гарри. Следовательно,

26 – 7 – 2 – 5 – 4 = 8 – книг прочитал только Рон.

Ответ: 8 книг прочитал только Рон .

Метод графов

Идея метода: Объекты представляются в графе вершинами Связи между объектами представляются, если связь однонаправленная (обозначается на схеме пунктирными линиями) или ребрами, если связь между объектами двусторонняя (обозначается сплошными линиями).

Рязань

Владимир

Игорь

Тула

- м

Сергей

Ярославль

- м

- л

- ф

+ ф

- л

- ф

Пример : Атос, Портос и Арамис в соревновании по фехтованию заняли три первых места. Какое место занял каждый из них, если Портос занял не второе и не третье место, а Арамис – не третье?

Решение : Учитывая условия задачи, сразу делаем вывод, что Портос занял первое место. Значит, Арамис занял второе место, и Атос – третье место. Решение задачи показано на чертеже:

Ответ: Арамис – второе место; Атос – третье место; Портос – первое место.

Преимущества:

Наглядность.

Возможность контролировать процесс рассуждений.

Возможность формализовать некоторые логические рассуждения.

Преимущества:

Метод диаграмм Эйлера позволяет графически решать математические задачи на основе применения теории множеств . Этот метод прост, если в нем разобраться.