СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

НАХОЖДЕНИЕ СУММЫ ПЕРВЫХ п ЧЛЕНОВ АРИФМЕТИЧЕСКОЙ ПРОГРЕССИИ

Категория: Математика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«НАХОЖДЕНИЕ СУММЫ ПЕРВЫХ п ЧЛЕНОВ АРИФМЕТИЧЕСКОЙ ПРОГРЕССИИ»

Нахождение суммы первых п членов
арифметической прогрессии

Учитель математики: Гасраталиева Расинат Магомедовна

Цели: вывести формулу суммы первых п членов арифметической прогрессии; формировать умение применять эту формулу при решении задач.

Ход урока

I. Организационный момент.

II. Актуализация знаний.

У с т н о:

1. Сформулируйте определение арифметической прогрессии.

2. Приведите пример арифметической прогрессии.

3. Сформулируйте определение разности арифметической прогрессии.

4. Назовите формулу п-го члена арифметической прогрессии.

П и с ь м е н н о:

В а р и а н т 1.

№ 578 (а).

В а р и а н т 2.

№ 578 (б).

III. Объяснение нового материала.

1. Создание проблемной ситуации.

З а д а ч а. Ученик мастера изготовил в первую неделю работы 15 гончарных изделий, а в каждую следующую неделю изготовлял на 5 изделий больше, чем в предыдущую. Сколько изделий ученик изготовил за восьмую неделю? Сколько изделий ученик изготовил всего в течение десяти недель?

Ответ на первый вопрос ученики знают, как получить, такие задачи решались ими на прошлых занятиях. Количество изготовленных изделий в первую, вторую и т. д. недели можно обозначить а1, а2,… ап, …, причем (ап) – арифметическая прогрессия с разностью d = 5 и первым членом а1 = 15. За восьмую неделю ученик изготовил гончарных изделий:

а8 = 15 + 5 (8 – 1) = 50.

Для ответа на второй вопрос ученики могут предложить только такой способ решения: подсчитать количество изделий, выполненных за 2-ю, 3-ю, …, 10-ю неделю, и сложить. Это очень долго. А если в задаче нужно будет найти сумму ста членов арифметической прогрессии, тысячи? Возникает проблема – нужна общая формула.

2. Пример из истории математики. Выступление учащегося.(Презентация)

С формулой суммы п первых членов арифметической прогрессии связан эпизод из жизни немецкого математика Карла Гаусса (1777–1855). Маленькому Карлу было 9 лет, когда учитель, занятый проверкой работ учеников, предложил классу сложить все натуральные числа от 1 до 100, рассчитывая надолго занять детей. Каково же было удивление преподавателя, когда через несколько минут Гаусс подошел к нему с верным ответом! Он подошел к решению творчески, заметив, что можно складывать числа не подряд, а парами: 1 + 100, 2 + 99, 3 + 98 … и т. д. Легко увидеть, что сумма чисел в каждой паре равна 101, а таких пар 50, значит общая сумма равна 101 · 50 = 5050.

А можно ли с помощью рассуждений, аналогичных тем, что проводил маленький Гаусс, найти сумму первых п членов любой арифметической прогрессии?

3. Вывод формулы.

Пусть (ап) – арифметическая прогрессия.

Обозначим Sn сумму п первых членов арифметической прогрессии.

Sn = а1 + а2 + а3 + а4 + … + ап – 1 + ап (1)

Sn = ап + ап – 1 + ап – 2 + ап – 3 + … + а2 + а1 (2)

Докажем, что сумма каждой пары членов прогрессии, расположенных друг под другом, равна а1 + ап.

a2 + an – 1 = (a1 + d) + (and) = a1 + an;

a3 + an – 2 = (a2 + d) + (an – 1d) = a2 + an – 1 = a1 + an;

a4 + an – 3 = (a3 + d) + (an – 2d) = a3 + an – 2 = a1 + an и т. д.

Число таких пар равно п. Складываем почленно (1) и (2) и получаем

2Sn = (a1 + an) · n.

– формула суммы п первых членов

арифметической прогрессии.

Обычно арифметическая прогрессия задается первым членом и разностью, поэтому удобно иметь еще формулу суммы п первых членов, выраженную через а1 и d арифметической прогрессии.

Sn = · n, ап = а1 + d (п – 1);

Sn = · n;

– формула суммы п первых членов

арифметической прогрессии.

4. Пример.

Вернемся к задаче про ученика мастера. В течение 10 недель ученик мастера изготовил

S10 = · 10 = 375 изделий.

IV. Формирование умений и навыков.

Так как формул суммы п первых членов арифметической прогрессии две, то необходимо сперва выяснить, в заданиях какого вида лучше использовать каждую из них, а затем при решении упражнений анализировать условие и выбирать формулу.

Упражнения:

1) Найти сумму первых тридцати членов арифметической прогрессии 4; 5,5; …

Р е ш е н и е

а1 = 4, d = 1,5, значит, по формуле II:

а30 = · 30 = 772,5.

2) Найти сумму первых сорока членов последовательности (ап), заданной формулой ап = 5 · п – 4.

Последовательность (ап) задана формулой вида ап = kn + b, где k = 5 и b = –4, значит, (ап) – арифметическая прогрессия. Если применять формулу II, то для этого сперва надо найти а1, а2 , затем d как разность а1а2. Это неудобно, проще сразу найти а1, а40 и подставить в формулу I.

а1 = 5 · 1 – 4 = 1; а4 = 5 · 40 – 4 = 196;

S40 = = 3940.

3) № 603, № 604. На «прямое» применение формул I и II. Самостоятельное решение с последующей проверкой.

№ 606.

№ 608 (а). У доски с объяснением. Здесь необходимо «увидеть», что последовательность слагаемых – арифметическая прогрессия, где а1 = 2, d = 2 и количество слагаемых равно п, можно применить формулу II. А можно задать эту прогрессию формулой ап = 2п и применить формулу I.

V. Итоги урока.

– Назовите формулу суммы первых п членов арифметической прогрессии (2 вида).

– В каких случаях удобнее применять формулу I, II?

Домашнее задание: № 605, № 607, № 608 (б), № 621 (а).