Доклад на тему: «Технология проблемного обучения»
Сегодня под проблемным обучением понимается такая организация учебных занятий, которая предполагает создание под руководством учителя проблемных ситуаций и активную самостоятельную деятельность учащихся по их разрешению.
При использовании данной технологии опираюсь на основные положения теории проблемного обучения (М. И. Махмутов). Придерживаюсь особенностей создания проблемных ситуаций, требований к формулировке проблемных вопросов, т. к. вопрос становится проблемным при определенных условиях: он должен содержать в себе познавательную трудность и видимые границы известного и неизвестного; вызывать удивление при сопоставлении нового с ранее известным.
Для активизации умственной деятельности учащихся и развития их мыслительных способностей использую познавательные задачи, опираясь на типологию задач, предложенную психологом В. А. Крутецким.
Технологию проблемного обучения использую в основном на уроках:
- изучения нового материала и первичного закрепления;
- комбинированных;
- блоковых проблемных занятиях - тренингах.
Данная технология позволяет:
- активизировать познавательную деятельность учащихся на уроке, что позволяет справляться с большим объемом учебного материала;
- сформировать стойкую учебную мотивацию, а учение с увлечением – это яркий пример здоровьесбережения;
- использовать полученные навыки организации самостоятельной работы для получения новых знаний из разных источников информации;
- повысить самооценку учащихся, т. к. при решении проблемы выслушиваются и принимаются во внимание любые мнения.
Проблемная ситуация может создаваться, когда обнаруживается несоответствие имеющихся знаний и умений действительному положению вещей. Чтобы учащиеся обнаружили это несоответствие, учитель просит учеников вспомнить известную формулировку понятия, правила, а затем предлагает для анализа такие специально подобранные факты, при анализе которых возникает затруднение.
Второй вид проблемного изложения нового материала - проблемная ситуация создается, когда детям предлагается вопрос, требующий самостоятельного сопоставления ряда изученных фактов или явлений, и высказывания собственных суждений и выводов, или дается специальное задание для самостоятельного решения. В процессе такого эвристического поиска возникает и поддерживается устойчивое внимание.
Опрос можно осуществить как решение учебно-познавательных задач, требующих не только воспроизведения изученного, но и установления более глубоких связей в понятии. Каждое из таких заданий требует не просто воспроизведения материала, а заставляет анализировать изученное, что способствует интеллектуальной активизации класса.
В общем виде структура проблемного урока выглядит следующим образом:
1) подготовительный этап;
2) этап создания проблемной ситуации;
3) осознание учащимися темы или отдельного вопроса темы в виде учебной проблемы;
4) выдвижение гипотезы, предположений, обоснование гипотезы;
5) доказательство, решение и вывод по сформулированной учебной проблеме;
6) закрепление и обсуждение полученных данных, применение этих знаний в новых ситуациях
Пример 1: «Неравенство треугольника»
Создание проблемной ситуации на уроке «Геометрии 7 класс» «Возможно ли построить с помощью циркуля и линейки треугольник со сторонами 2 см, 5 см и 9 см?»
Пример 2. «Нахождение дроби от числа».
1) Решим задачу: «Огород занимает 6 ар земляного участка. На 1/3 огорода посажен картофель. Какую часть всего земляного участка занимает картофель?» Можем ли мы решить задачу? Как?
Охарактеризуйте задачу. Отойдем от огорода и картофеля, перейдем к величинам. Что нам известно? [целое]. Что нужно найти? [часть]
2) Возьмем ту же задачу, но изменим значения одной величины: «Огород занимает 4/5 земельного участка. На 2/3 огорода посажен картофель. Какую часть всего земельного участка занимает картофель?» Изменился ли математический смысл задачи? [нет]. Значит, опять известно целое, а ищем часть. Влияет ли замена 6 на 4/5 на решение? Можно ли решить? [нет].
Что за ситуацию мы получили?
[Обе задачи на нахождение части от числа. Но одну мы можем решить зная определенные дроби, понятие числителя и знаменателя, а вторую не можем]. Проблема: не знаем общего правила нахождения дроби от числа. Нужно вывести это правило.
Преимущества технологии проблемного обучения: способствует не только приобретению учащимися необходимой системы знаний, умений и навыков, но и достижению высокого уровня их умственного развития, формированию у них способности к самостоятельному добыванию знаний путем собственной творческой деятельности; развивает интерес к учебному труду; обеспечивает прочные результаты обучения.