СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Электрооборудование тракторов

Категория: Прочее

Нажмите, чтобы узнать подробности

Электрооборудование тракторов

Просмотр содержимого документа
«Электрооборудование тракторов»

Электрооборудование  тракторов

Электрооборудование тракторов

Аккумуляторная батарея

Аккумуляторная батарея

Аккумуляторная батарея состоит из нескольких одинаковых аккумуляторов напряжением 2 В каждый, соединенных между собой последовательно. Преимущественное распространение получили кислотно-свинцовые аккумуляторные батареи, электроды которых изготовлены на основе свинца, а электролитом служит раствор, составленный в определенных пропорциях из серной кислоты (ГОСТ 667-73) и дистиллированной воды (ГОСТ 6709-72). На тракторах МТЗ-80 и МТЗ-82 в специальном отсеке за кабиной трактора установлены две соединенные последовательно аккумуляторные батареи ЗСТ-215ЭМ (рис. 79), а на тракторах МТЗ-80Л и МТЗ-82Л - одна батарея 6СТ-60ЭМС. В батарее ЗСТ-215ЭМ три последовательно соединенных аккумулятора (элемента), а в батарее 6СТ-60ЭМС их шесть.

Аккумуляторная батарея состоит из нескольких одинаковых аккумуляторов напряжением 2 В каждый, соединенных между собой последовательно.

Преимущественное распространение получили кислотно-свинцовые аккумуляторные батареи, электроды которых изготовлены на основе свинца, а электролитом служит раствор, составленный в определенных пропорциях из серной кислоты (ГОСТ 667-73) и дистиллированной воды (ГОСТ 6709-72).

На тракторах МТЗ-80 и МТЗ-82 в специальном отсеке за кабиной трактора установлены две соединенные последовательно аккумуляторные батареи ЗСТ-215ЭМ (рис. 79), а на тракторах МТЗ-80Л и МТЗ-82Л - одна батарея 6СТ-60ЭМС. В батарее ЗСТ-215ЭМ три последовательно соединенных аккумулятора (элемента), а в батарее 6СТ-60ЭМС их шесть.

Система зажигания

Система зажигания

На пусковом двигателе установлено магнето М124-Б1 правого вращения с неизменным моментом искрообразования (установочный угол опережения зажигания 27°). Привод магнето осуществляется через жесткую полумуфту 9 от приводной шестерни пускового двигателя.

Корпус 1 магнето отлит из цинкового сплава. Между полюсными башмаками магнитопровода на шариковых подшипниках расположен ротор 2, который является основной частью генератора переменного тока и предназначен для создания и изменения величины магнитного потока, проходящего через сердечник. Ротор состоит из пакета ламелей, напрессованных на магнит, и двух валиков. Валики и магнит с ламелями залиты цинковым сплавом.

Трансформатор 4 служит для создания тока высокого напряжения. Он состоит из сердечника, собранного из отдельных пластин электротехнической стали, первичной и вторичной обмоток. Обмотки с торцов защищены гетинаксовыми щеками. На одной из щек трансформатора находится наконечник с припаянным к нему концом первичной и началом вторичной обмотки. Наконечник соединен с контактной стойкой 11 прерывателя. Конец вторичной обмотки через защитную ленту припаян к электроду. Первичная обмотка состоит из малого числа витков толстого провода, а вторичная обмотка -из большого числа витков тонкого провода. Для повышения электрической прочности трансформатор пропитан турбинным маслом.

Прерыватель объединяет кулачок 7, установленный на валу ротора, контактную стойку 11 и рычажок 10 с вольфрамовыми контактами. Все эти элементы совместно с фильцем 14 для смазывания кулачка смонтированы в крышке 3 магнето. Когда ротор магнето вращается, кулачок размыкает контакты прерывателя, между которыми образуется зазор 0,25...0,35 мм.

Принцип действия магнето заключается в следующем. При вращении ротора в магнитопроводе корпуса и сердечнике трансформатора создается переменный по величине и направлению магнитный поток, который пересекает витки первичной обмотки трансформатора и наводит в ней э.д.с. Под действием э.д.с. в этой обмотке возникает переменный электрический ток низкого напряжения.

Батарейное зажигание Схема батарейного зажигания: а— общая, 6 — принципиальная; 1 — выключатель зажигания, 2 — аккумуляторная батарея, 3— катушка зажигания, 4 — свечи зажигания искровые, 5 — прерыватель-распределитель, 6 — ротор, 7 — кулачок, 8 — контакты прерывателя, 9 — конденсатор, 10 — первичная обмотка, 11 — вторичная обмотка, 12 — контакты выключения дополнительного резистора (устанавливаются в реле стартера), Ra—добавочный резистор (вариатор)

Батарейное зажигание

Схема батарейного зажигания: а— общая, 6 — принципиальная; 1 — выключатель зажигания, 2 — аккумуляторная батарея, 3— катушка зажигания, 4 — свечи зажигания искровые, 5 — прерыватель-распределитель, 6 — ротор, 7 — кулачок, 8 — контакты прерывателя, 9 — конденсатор, 10 — первичная обмотка, 11 — вторичная обмотка, 12 — контакты выключения дополнительного резистора (устанавливаются в реле стартера), Ra—добавочный резистор (вариатор)

Батарейная система зажигания состоит из катушки зажигания, прерывателя-распределителя, искровых свечей и выключателя зажигания. Система зажигания получает питание от аккумуляторной батареи или генератора. Катушка зажигания, прерыватель-распределитель и свечи соединены между собой проводами высокого напряжения. При включении выключателя зажигания и замыкании контактов прерывателя в первичной цепи начинает проходить ток. Катушка зажигания обладает значительной индуктивностью, поэтому сила тока, нарастает до установившегося значения не мгновенно, а спустя определенный период времени, так как быстрому увеличению тока препятствует э. д. с. самоиндукции катушки.

Батарейная система зажигания состоит из катушки зажигания, прерывателя-распределителя, искровых свечей и выключателя зажигания. Система зажигания получает питание от аккумуляторной батареи или генератора. Катушка зажигания, прерыватель-распределитель и свечи соединены между собой проводами высокого напряжения.

При включении выключателя зажигания и замыкании контактов прерывателя в первичной цепи начинает проходить ток.

Катушка зажигания обладает значительной индуктивностью, поэтому сила тока, нарастает до установившегося значения не мгновенно, а спустя определенный период времени, так как быстрому увеличению тока препятствует э. д. с. самоиндукции катушки.

Свеча зажигания а) Разборная: 1 — корпус; 2 — клемма; зажимная гайка; 4 — центральный электрод; 5 — боковой электрод; 6 — уплотняющее кольцо; 7 — изолятор, б) Неразборная.

Свеча зажигания

а) Разборная: 1 — корпус; 2 — клемма; зажимная гайка; 4 — центральный электрод; 5 — боковой электрод; 6 — уплотняющее кольцо; 7 — изолятор, б) Неразборная.

Нижняя часть свечи подвергается воздействию высоких давлений и температур. Поэтому электроды изготовляют из стойкой никелево-марганцовистой проволоки, а изоляторы — из уралита (керамический материал, основной частью которого является окись алюминия). Условия работы изолятора резко ухудшаются, если в соединениях между ним и корпусом имеются неплотности. Прорывающиеся газы перегревают свечу, в изоляторе образуются трещины, и свеча выходит из строя. Уплотнение неразборных свечей более надежно, и в этом их преимущество перед разборными. При нормальной температуре (600—850°) изолятор самоочищается от нагара и имеет характерный светло-коричневый цвет. При более низкой температуре нагар отлагается на изоляторе и искрообразование между электродами может прекратиться. Чрезмерно высокая температура приводит к оплавлению нижней части изолятора и трещинам в нем. Чем больше диаметр отверстия корпуса и длиннее конец изолятора, тем хуже отводится тепло от свечи и, следовательно, выше ее температура

Нижняя часть свечи подвергается воздействию высоких давлений и температур. Поэтому электроды изготовляют из стойкой никелево-марганцовистой проволоки, а изоляторы — из уралита (керамический материал, основной частью которого является окись алюминия). Условия работы изолятора резко ухудшаются, если в соединениях между ним и корпусом имеются неплотности. Прорывающиеся газы перегревают свечу, в изоляторе образуются трещины, и свеча выходит из строя. Уплотнение неразборных свечей более надежно, и в этом их преимущество перед разборными. При нормальной температуре (600—850°) изолятор самоочищается от нагара и имеет характерный светло-коричневый цвет. При более низкой температуре нагар отлагается на изоляторе и искрообразование между электродами может прекратиться. Чрезмерно высокая температура приводит к оплавлению нижней части изолятора и трещинам в нем. Чем больше диаметр отверстия корпуса и длиннее конец изолятора, тем хуже отводится тепло от свечи и, следовательно, выше ее температура

Генераторы переменного тока Схема трёхщёточного генератора типа ГБФ с реле типа ЦБ: 1 - сердечник реле; 2 - якорёк; 3 - подвижной контакт; 4 - неподвижной контакт; 5 - ярмо; 6 - сериесная обмотка реле; 7 - шунтовая обмотка реле; 8 - пружина; 9 - крышка реле; 10 - аккумуляторная батарея; 11 - обмотка возбуждения; 12 - третья щётка

Генераторы переменного тока

Схема трёхщёточного генератора типа ГБФ с реле типа ЦБ: 1 - сердечник реле; 2 - якорёк; 3 - подвижной контакт; 4 - неподвижной контакт; 5 - ярмо; 6 - сериесная обмотка реле; 7 - шунтовая обмотка реле; 8 - пружина; 9 - крышка реле; 10 - аккумуляторная батарея; 11 - обмотка возбуждения; 12 - третья щётка

Генераторы переменного тока с возбуждением от постоянных магнитов получили широкое применение в системе электрического освещения тракторов. Эти генераторы имеют вращающиеся магниты (на роторе) и неподвижную обмотку (на статоре). Наряду с простотой устройства генераторы переменного тока надёжны в эксплуатации и не требуют особого ухода за ними. Практически величина тока, отдаваемого генератором, начиная с нек-рого числа оборотов остаётся примерно постоянной, т. к., наряду с увеличением электродвижущей силы, вызываемым повышением числа оборотов ротора, увеличивается и реактивное сопротивление цепи. Напряжение на зажимах нагруженного генератора зависит от изменения сопротивления внешней цепи (т. е. числа и мощности включаемых ламп).

Генераторы переменного тока с возбуждением от постоянных магнитов получили широкое применение в системе электрического освещения тракторов. Эти генераторы имеют вращающиеся магниты (на роторе) и неподвижную обмотку (на статоре). Наряду с простотой устройства генераторы переменного тока надёжны в эксплуатации и не требуют особого ухода за ними. Практически величина тока, отдаваемого генератором, начиная с нек-рого числа оборотов остаётся примерно постоянной, т. к., наряду с увеличением электродвижущей силы, вызываемым повышением числа оборотов ротора, увеличивается и реактивное сопротивление цепи. Напряжение на зажимах нагруженного генератора зависит от изменения сопротивления внешней цепи (т. е. числа и мощности включаемых ламп).


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!