СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Критерии оценивания на уроках математики

Категория: Математика

Нажмите, чтобы узнать подробности

приведены критерии оценивания письменных, устных и комбинированных  ответов учащихся на уроках математики с 5 по 9 классы

Просмотр содержимого документа
«Критерии оценивания на уроках математики»

Оценка письменной работы по выполнению вычислительных заданий и алгебраических преобразований

Оценка «5» ставится за безукоризненное выполнение письменной работы, т.е.:

а) если решение всех примеров верное;

б) если все действия и преобразования выполнены правильно, без ошибок; все

записи хода решения расположены последовательно, а также

сделана проверка решения в тех случаях, когда это требуется.

Оценка «4» ставится за работу, в которай допущена одна (негрубая) ошибка или два-три недочета.

Оценка «3» ставится в следующих случаях:

а) если в работе имеется одна грубая ошибка и не более одной негрубой ошибки;

б) при наличии одной грубой ошибки и одного-двух недочетов;

в) при отсутствии грубых ошибок, но при наличии от двух до четырех (негрубых) ошибок;

г) при наличии двух негрубых ошибок и не более трех недочетов;

д) при отсутствии ошибок, но при наличии четырех и более недочетов;

е) если неверно выполнено неболее половины объема всей работы.

Оценка «2» ставится, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка, или

если правильно выполнено менее половины всей работы.

Оценка «1» ставится, если ученик совсем не выполнил работу.

Примечание. Оценка «5» может быть поставлена, несмотря на наличие одного-двух недочетов, если ученик дал

оригинальное решение заданий, свидетельствующее о его хорошем математическом развитии.

Оценка письменной работы на решение текстовых задач

Оценка «5» ставится в том случае, когда задача решена правильно: ход решения задачи верен, все действия и преобразования

выполнены верно и рационально; в задаче, решаемой с вопросами или пояснениями к действиям, даны точные и правильные

формулировки; в задаче, решаемой с помощью уравнения, даны необходимые пояснения; записи правильны, расположены

последовательно, дан верный и исчерпывающий ответ на вопросы задачи; сделана проверка решения (в тех случаях, когда это требуется).

Оценка «4» ставится в том случае, если при правильном ходе решения задачи допущена одна негрубая ошибка или два-три недочета.

Оценка «3» ставится в том случае, если ход решения правилен, но допущены:

а) одна грубая ошибка и не более одной негрубой;

б) одна грубая ошибка и не более двух недочетов;

в) три-четыре негрубые ошибки при отсутствии недочетов;

г) допущено не более двух негрубых ошибок и трех недочетов;

д) более трех недочетов при отсутствии ошибок.

Оценка «2» ставится в том случае, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка.

Оценка «1» ставится в том случае, если ученик не выполнил ни одного задания работы.

Примечания:

1. Оценка «5» может быть поставлена несмотря на наличие описки или недочета, если ученик дал оригинальное решение, свидетельствующее о его хорошем математическом развитии.

2. Положительная оценка «3» может быть выставлена ученику, выполнившему работу не полностью, если он безошибочно выполнил более половины объема всей работы.

Оценка комбинированных письменных работ по математике

Письменная работа по математике, подлежащая оцениванию, может состоять из задач и примеров (комбинированная работа). В таком случае преподаватель сначала дает предварительную оценку каждой части работы, а затем общую, руководствуясь следующим:

а) если обе части работы оценены одинаково, то эта оценка должна быть общей для всей работы в целом;

б) если оценки частей разнятся на один балл, например даны оценки «5» и «4» или «4» и «3» и т. п., то за работу в целом, как

правило, ставится балл, оценивающий основную часть работы;

в) если одна часть работы оценена баллом «5», а другая — баллом «3», то преподаватель может оценить такую работу в целом

баллом «4» при условии, что оценка «5» поставлена за основную часть работы;

г) если одна из частей работы оценена баллом «5» или «4»,а другая — баллом «2» или «1», то преподаватель может оценить

всю работу баллом «3» при условии, что высшая из двух данных

оценок поставлена за основную часть работы.

Примечание. Основной считается та часть работы, которая включает больший по объему или наиболее важный по значению материал по изучаемым темам программы.

Оценка текущих письменных работ

При оценке повседневных обучающих работ по математике учитель руководствуется указанными нормами оценок, но учитывает степень самостоятельности выполнения работ учащимися.

Обучающие письменные работы, выполненные учащимися вполне самостоятельно с применением ранее изученных и хорошо закрепленных знаний, оцениваются так же, как и контрольные работы.

Обучающие письменные работы, выполненные вполне самостоятельно, на только что изученные и недостаточно закрепленные правила, могут оцениваться менее строго.

Письменные работы, выполненные в классе с предварительным разбором их под руководством учителя, оцениваются более строго.

Домашние письменные работы оцениваются так же, как классная работа обучающего характера.

Устные ответы учащихся 5-6 классов.

Оценка устных ответов.

а) Ответ оценивается отметкой “5”, если учащийся:

1) полностью раскрыл содержание материала в объеме, предусмотренном программой и учебником;

2) изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

3) правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

4) показал умение иллюстрировать теорию конкретными примерами, применять в новой ситуации при выполнении практического задания;

5) продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;

6) отвечая самостоятельно, без наводящих вопросов учителя.

Возможны 1-2 неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

б) Ответ оценивается отметкой “4”, если удовлетворяет в основном требованиям на оценку “5”, но при этом имеет один из недочетов:

1) в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;

2) допущены 1-2 недочета при освещении основного содержания ответа, исправленные после замечания учителя;

3) допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

в) Ответ оценивается отметкой “3”, если:

1) неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программы;

2) имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

3) ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил обязательное задание.

г) Ответ оценивается отметкой “2”, если:

1) не раскрыто содержание учебного материала;

2) обнаружено незнание или не понимание учеником большей или наиболее важной части учебного материала;

3) допущены ошибки в определении понятия, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.