2.Актуализация знаний. 3.Постановка учебной задачи. 4.Открытие нового знания. 1).Решение задачи. 2).Знакомство с циркулем. 3)Физкультминутка 4).Практическая работа Практическая работа (продолжение). 5.Закрепление, систематизация, применение. 6.Домашнее задание. 7.Рефлексия. | Какая тема нашего урока мы узнаем, если верно выполним арифметические вычисления. Какая тема урока? Что же нового мы узнаем сегодня на уроке? Как вы думаете, часто ли нам приходится встречаться с кругом окружностью в повседневной жизни? Где мы можем увидеть круг? 1.Послушайте и отгадайте загадку: В дверь вошло животное, До того голодное: Съело веник и метлу, Съело коврик на полу, Занавески на окне И картину на стене, Со стола слизнула справку И опять пошло на грядку. Я предлагаю встретится нам с нашими старыми друзьями Мишей, Машей и козой Белочкой. - Чем является колышек, к которому привязана верёвка? - Может ли коза Белочка пощипать все цветочки внутри круга? Когда вся трава в пределах первоначального круга будет выщипана, то, как можно дать возможность Белочке пощипать свежей травки? Начертить круг можно с помощью веревки, палки. А если у нас нет ничего , то как можно начертить круг? Для того чтобы начертить круг, нужно знать его границы. Что является границей круга? Для того чтобы построить окружность нужен специальный инструмент, который называется ЦИРКУЛЬ. Циркуль состоит из двух ножек, на конце одной игла, а конце другой - грифель. За головку мы держим и поворачиваем циркуль. Знакомо ли вам это слово? У циркуля две ножки. На конце одной ножки игла, на конце другой грифель. Ножки циркуля подвижны. Благодаря подвижности ножек мы можем начертить окружность разных размеров. С ним нужно работать осторожно. А почему? При работе с циркулем нужно соблюдать определённые правила: нельзя подносить иглой к лицу и передавать соседу «иглой вперёд. Острый конец всегда должен оставаться в одной точке, а расстояние между ножками не должно меняться. Его нужно держать за хвостик, а не за ножку. Игра “Круг или окружность”. (Дети хлопают если это круг, показывают кольцо руками, если это окружность.) крышка, – бублик, – тарелка, – баранка, – колечко, – браслет, – блин – зеркало Возьмите циркуль, поставьте ножку с иголочкой на бумагу, а ножкой грифелем очертите круг. Отметьте простым карандашом точку, которая осталась от иголочки. Это центр круга, её можно обозначить точка О. держим за хвостик и пробуем начертить окружность.
На парте у каждого круг из цветной бумаги. Согните ваш круг пополам. Сколько половинок получилось? Какие получились половинки? Какая линия сгиба получилась? У нее есть начало и конец? Как она называется? Этот отрезок, который проходит от края круга до другого края через центр называется диаметр. А теперь сложите полукруг пополам. Получился полукруг. .А теперь еще раз сложите пополам. Где оказался центр? Покажите его. У этой фигуры, которую мы получили, есть свое название – сектор. Разверните ваш круг. Проведите пальцем от центра круга до его края по сгибу. Этот отрезок называется, словом радиус. Сколько радиусов на вашем круге? Чем круг отличается от окружности?
А что вы запомнили о диаметре? - Этот отрезок самый длинный. Он соединяет два противоположных края круга. - В круге можно провести сколько угодно диаметров. Они будут одинаковые. Молодцы, ребята. А что такое радиус?
А теперь мы будем учиться строить окружность с помощью циркуля. С заданным радиусом. - Прежде чем приступить к работе с циркулем вспомним правила безопасности.
Возьмём циркуль и линейку, иголку циркуля приложим к 0, а ножку отодвинем на 2см. - А теперь перенесём циркуль в тетрадь. Постарайтесь, чтобы острый конец циркуля стоял на одном месте и не сдвигался. Там, где стояла иголка циркуля, поставим точку. Обозначим точку латинской буквой О. Теперь поставим точку в любом месте окружности и обозначим латинской буквой «А». Соединим точки «О» и «А» при помощи линейки. Отрезок ОА– это радиус окружности. А теперь повторим эту работу. Поставим ещё одну точку как у меня на окружности. Обозначим её «К», проведём отрезок ОК. -Что получили? -А теперь сравните два радиуса этой окружности. Какой вывод мы можем сделать?
Верно радиусы одной окружности равны. У нас получился еще один отрезок, который проходит через центр окружности. Как он называется? АК – это диаметр окружности.
Самостоятельно постройте окружность с радиусом равным 3 см.Проведите в своей окружности диаметр, обозначьте радиус.
Рабочая тетрадь (часть 1) с.70. На протяжении урока вы были активны и внимательны. Мы справились с поставленными задачами. - Что на уроке вам больше всего понравилось? -Что вы запомнили об окружности? -Чем круг отличается от окружности? -Что вы запомнили о радиусе? Молодцы!
А сейчас я предлагаю вам сделать аппликацию. На плакате (на доку вывешивается заготовленный плакат с изображением клоуна .Он очень любит жонглировать шариками. У вас на столе лежат кружки из цветной бумаги (красный, синий). Вам нужно выбрать кружок одного цвета -Красный кружок, если вам понравилась работа на уроке; -Синий кружок, если работа на уроке вам не понравилась; | Увеличь каждое из числа в 9 раз. Расположи ответы в порядке убывания. 5 4 0 9 Р У Г К Расположи ответы в порядке возрастания. 80-34= У 30+49= Н 71+18= Т 54-14= К 52-26= О 63+37= Ь 56-12= Р 90-7= О 28+24= Ж 70+14= С Дети выходят к доске по одному и решают примеры, затем ответы располагают в порядке возрастания. Круг и окружность. Узнаем, что такое окружность и что такое круг. Научимся строить эти геометрические фигуры. Нам часто приходится встречаться с кругом и окружностью в повседневной жизни. Форму круга могут иметь тарелка, блюдце, барабан… Коза. Дети прослушивают диалог Миши и Маши с диска . «Почему наша коза Белочка выщипала ровную площадку? Она же не знает геометрических фигур», - спросил Миша у сестры. «Мы забили колышек, чтобы привязать Белочку. Это - центр круга, в котором будет пастись Белочка. Привязали верёвку. Белочка не может отойти от центра больше, чем на длину этой верёвки. Именно так в геометрии и получается круг», - объяснила Маша. Центром круга. -Может. В какой бы точке внутри круга не находился цветок, верёвка не будет этому мешать. Длина верёвки больше, чем расстояние от центра круга до того места, где растёт цветок. . Дети дают варианты ответов. а) удлинить верёвку; б) укоротить верёвку; в) перенести колышек в другое место Нужно взять специальный инструмент. Окружность. Дети пробуют начертить окружность с любым радиусом. Две. Одинаковые, равные Прямая. Да. Отрезок. 4. Окружность – это граница круга. А круг – это площадь, ограничиваемая окружностью Диаметр проходит через центр окружности Радиус окружности – отрезок, соединяющий центр окружности с точкой на окружности. Дети обсуждают правила в парах. С ним нужно работать осторожно. Нельзя подносить иглой к лицу и нельзя передавать циркуль соседу “иглой вперед”. Радиус. Они равны; сколько бы мы ни проводили таких отрезков, они все будут равны ( ОА= ОК) АК Ребята высказывают свою оценку урока при этом наклеивают выбранный кружок на плакат с веселым клоуном. | Наглядный метод Технический прием: использования флипчата. Фронтальная. Индивидуальная Наглядный метод. Логический прием: прогнозирование. Фронтальная. Словесный метод: беседа Технический прием: использование видеофайла с диска. Логический прием: анализ, синтез, сравнение. Фронтальная. Словесный метод: рассказ. Наглядный метод. Технический прием: использование флипчата. Фронтальная Практический метод. Прием: упражнение в построение окружности. Индивидуальная Практический метод. Прием: моделирование. Построение окружности. Индивидуальная. Наглядный метод Практический метод: построение окружности. Технический прием: использования флипчата Индивидуальная, фронтальная. Самостоятельная работа. Практический : упражнение. Индивидуальная. Словесный метод: беседа Логический прием: сравнение, анализ. Фронтальная. | Слайд 1.Дети называют ответ, нажимают на цифру, появляется ответ, затем перемещают ответы. Слайд 2. Слайд 3 Слайд 4 Слайд 5 Слайд 6 Слайд 7 Слайд 8 Нажать на точку К- появится радиус ОК. Нажать на точку О- появится понятие « центр». Нажать на АО- появиться понятие «радиус». Нажать около точки К-понятие « диаметр» |