Олимпиадные задания для школьного тура

Категория: Математика

подбор олимпиадных заданий для шк тура

 

Просмотр содержимого документа
«Олимпиадные задания для школьного тура»

Школьный тур олимпиада по математике

10 класс 2017-2018 учебный год


  1. Делится ли 132013 + 132014 + 132015 на 61?

  2. Сравните числа + и

  3. На координатной плоскости изображены графики функций

и . Найдите значения b и c. В ответе запишите уравнения каждой из функций.

  1. В четырехугольнике АВСД длина стороны АВ =12, синус угла ВАС равен 0,32, синус угла АДВ равен 0,48. Сумма углов ВАД и ВСД равна 1800. Найдите длину стороны ВС.


  1. М.В.Ломоносов тратил одну денежку на хлеб и квас. Когда цены выросли на 20%, на туже денежку он приобретал полхлеба и квас. Хватит ли той же денежки ему хотя бы на квас, если цены вырастут еще на 20%?




Каждое задание оценивается в 7 баллов.

Максимальное количество баллов за работу 35 баллов.

Желаем успехов!










ОТВЕТЫ:

  1. .

  1. .Сравните числа  и 10.

Решение. Возведем оба числа в квадрат, так они оба положительны:

;

. Так как равны квадраты положительных чисел, значит, равны и сами числа.

Ответ: числа равны.

  1. .

5). Ответ. Хватит.

Решение.

Пусть первоначально квас стоил х% от денежки, а хлеб – (100 - х)%. После подорожания цен на 20%, получим следующий баланс . Отсюда . При двукратном подорожании цен эта величина увеличится в 1,44 раза и достигнет величины 96%, что меньше стоимости денежки.



Скачать

Рекомендуемые курсы ПК и ППК для Вас