СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Показательные и логарифмические уравнения, неравенства и системы уравнений, и неравенств.

Категория: Математика

Нажмите, чтобы узнать подробности

ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ, НЕРАВЕНСТВА И СИСТЕМЫ УРАВНЕНИЙ, И НЕРАВЕНСТВ.

(Раздел «Уравнения и неравенства»)

ДЕЯТЕЛЬНОСТНАЯ КАРТА УЧЕБНОГО ЗАНЯТИЯ

Просмотр содержимого документа
«Показательные и логарифмические уравнения, неравенства и системы уравнений, и неравенств.»

ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ, НЕРАВЕНСТВА И СИСТЕМЫ УРАВНЕНИЙ, И НЕРАВЕНСТВ.

(Раздел «Уравнения и неравенства»)


ДЕЯТЕЛЬНОСТНАЯ КАРТА УЧЕБНОГО ЗАНЯТИЯ


Профессии: 15.01.20 Слесарь по контрольно-измерительным приборам и автоматике, 09.01.03 Мастер по обработке цифровой информации, 23.01.03 Автомеханик, 09.01.01 Наладчик аппаратного и программного обеспечения

Учебные группы: КИП-11, М-11, А-11, Н-11

Учебная дисциплина: ООПу.04 Математика

Тема учебного занятия: Показательные и логарифмические уравнения, неравенства и системы уравнений, и неравенств.

Тип урока: урок «открытия» новых знаний

Вид урока: лекция-беседа

Средства обучения:

  • технические: мультимедийный проектор, персональный компьютер;

  • информационно-коммуникационные: электронная презентация.

Цели урока:

методическая: использование объяснительно-иллюстративного метода обучения с целью формирования математического мышления студентов;

образовательная: создание условий для овладения знаниями о показательных и логарифмических уравнениях, неравенства и систем уравнений, и неравенств;

развивающая: развитие умений планировать, анализировать, выдвигать гипотезы по решению заданий, применять полученные знания для выполнения упражнений;

воспитательная: воспитание интереса к изучению математики, математической культуры студентов.

Прогнозируемые результаты:

1) предметные:

  • сформированность знаний о показательных и логарифмических уравнениях, неравенства и систем уравнений, и неравенств;

  • владение умением решать задачи на показательных и логарифмических уравнениях, неравенств и систем уравнений, и неравенств;

2) метапредметные:

  • регулятивные:

  • умение ставить перед собой цель, видеть ожидаемый результат работы;

  • умение рационально распределять рабочее время;

  • умение объективно оценивать свои возможности, анализировать свои результаты, корректировать свои действия;

  • владение навыками познавательной рефлексии;

  • познавательные:

  • умение осуществлять поиск и отбор необходимой информации;

  • умение сопоставлять и анализировать, выделять в тексте базовые и вспомогательные концепты, опорные понятия, тезисы, структурировать их взаимосвязь;

  • умение структурировать полученную информацию;

  • умение анализировать и обобщать информацию;

  • коммуникативные:

  • умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности;

  • умение выражать свои мысли с достаточной полнотой и точностью.

Образовательные технологии: традиционное обучение.

Формы организации обучения: фронтальная, индивидуальная.

Методы обучения и контроля:

  • вербальные: беседа;

  • практические: метод сравнения, метод анализа и структурирования.

  • методы контроля и самоконтроля: устный контроль, самоконтроль.


Нормативный документ

Федеральный государственный образовательный стандарт среднего общего образования (утв. приказом Министерства образования и науки Российской Федерации (Минобрнауки России) от 17 мая 2012 г. № 413 г.). – М.: Министерство образования и науки РФ, – 2012.


Образовательные ресурсы:

Основная литература

  1. Башмаков М. И. Математика: учебник для студ. учреждений сред. проф. образования. − М.: Издательский центр «Академия», 2018. – 256 с.

  2. Башмаков М. И. Математика. Сборник задач профильной направленности: учеб. пособие для студ. учреждений сред. проф. образования. − М.: Издательский центр «Академия», 2014. – 416 с.

Дополнительная литература

  1. Алимов Ш.А., Колягин Ю.М. Алгебра и начала математического анализа (базовый и углубленный уровни).10—11 классы. Учебник. − М.: Просвещение, 2014. – 464 с.

  2. Атанасян Л.С. Геометрия. 10 − 11 классы: учебник для общеобразовательных учреждений: базовый и профильный уровни / Атанасян Л.С., Бутузов В.Ф. и др. – М.: Просвещение, 2013. – 255 с.

  3. Богомолов Н.В. Практические занятия по математике: Учеб. пособие для техникумов / Н.В. Богомолов. – М.: Высш. шк., 2013. – 495 с.

  4. Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика (Книга 1): Учебное пособие. – М.: Издательство «Новая волна», 2013. – 656 с.

  5. Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика (Книга 2): Учебное пособие. – М.: Издательство «Новая волна», 2013. – 592 с.

  6. Никольский С.М. Алгебра и начала анализа: учебник для 10 класса общеобразоват. учреждений: базовый и профильный уровни / С.М. Никольский, М.К. Потапов. – М.: Просвещение, 2013. – 430 с.

  7. Никольский С.М. Алгебра и начала анализа: учебник для 11 класса общеобразоват. учреждений: базовый и профильный уровни / С.М. Никольский, М.К. Потапов. – М.: Просвещение, 2013. – 464 с.


Интернет-ресурсы:

  1. Федеральный центр информационно-образовательных ресурсов [Электронный ресурс] URL: www. fcior. edu. ru

  2. Единая коллекции цифровых образовательных ресурсов [Электронный ресурс] URL: www. school-collection. edu. ru


Научно-методические ресурсы:

  1. Инновационные педагогические технологии: учебное пособие/ Михелькевич В.Н., Нестеренко В.М., Кравцова П.Г. – Самар. гос. тех. ун-т Самара, 2001. – 89 с.

  2. Кульневич С.В., Лакоценина Т.П. Современный урок. Часть 1: Научно-практич. пособие для учителей, методистов, руководителей учебных заведений, студентов пед. заведений, слушателей ИПК. – Ростов н/Д: Учитель, 2005. – 288 с.

  3. Кульневич С.В., Лакоценина Т.П. Современный урок. Часть 3: Научно-практич. пособие для учителей, методистов, руководителей учебных заведений, студентов пед. заведений, слушателей ИПК. – Ростов н/Д: Учитель, 2007. – 288 с.

  4. Махмутов М.И. Проблемное обучение: Основные вопросы теории. – М.: Педагогика, 1975. – 368 с.


Основные термины и понятия: показательные уравнения, логарифмические уравнения, показательные неравенства, логарифмические неравенства, показательные системы уравнений, логарифмические системы уравнений, показательные системы неравенств, логарифмические системы неравенств.




ПЛАН УЧЕБНОГО ЗАНЯТИЯ


Содержание учебного материала:

1) Сформированность знаний о показательных и логарифмических уравнениях, неравенства и систем уравнений, и неравенств.

2) Закрепление теоретического материала по теме с помощью решения упражнений.


  1. Этап мотивации (самоопределения) к учебной деятельности (2 мин)

Преподаватель приветствует студентов, создает деловую обстановку, настраивает на продуктивную мыслительную деятельность.

  1. Этап актуализации опорных знаний. Целеполагание (15 мин)

Преподаватель задает вопросы студентам:

  1. Какие вы знаете показательные уравнения?

  2. Какие вы знаете логарифмические уравнения?

Студенты отвечают на эти вопросы, вспоминая знания, полученные на предыдущем занятии.

Формулирование темы и целей учебного занятия.

  1. Работа над новой темой («открытие» нового знания) (48 мин)

Алгоритм работы над «открытием» нового знания:

Формулирование преподавателем определений показательных и логарифмических уравнений, неравенств и систем уравнений, и неравенств.

Теория

Показательные уравнения

aх=b. где a0, a≠1

Если b0, уравнение имеет один корень: . График функции  пересекает прямую y=b в одной точке.

Если b≤0 корней нет. График функции  не пересекает прямую y=b.

При решении неравенств, обращаем внимание на основание. Если а0, знак неравенства сохраняется. Если а

Логарифмические уравнения

, где a0, a≠1.

Логарифмическое уравнение имеет один положительный корень  при любом значении b.

График функции пересекает прямую y=b в одной точке.

Уравнение имеет один положительный корень  при любом b. График функции пересекает прямую y=b в одной точке.

При решении логарифмических неравенств обращаем внимание на область допустимых значений. Затем с учетом ОДЗ и значения решаем неравенство.

Теперь рассмотрим методы решения. Основных приема два: приведение к одинаковому знаменателю и замена переменной.

1 прием. Как в показательном, так и в логарифмическом уравняем основания. Затем сравним показатели или числа, стоящие под знаком логарифма.

2 прием. Замена переменных.

Находим корни и делаем обратную замену. При решении неравенств применяем те же самые приемы.

При решении логарифмических уравнений, возможно появление посторонних корней. Причина их появления — расширение области определения исходного уравнения. Поэтому проверка корней логарифмического уравнения осуществляется либо по области определения, либо непосредственной подстановкой найденных корней в исходное логарифмическое уравнение.



  1. Включение нового знания в систему имеющихся знаний (20 мин)

Примеры

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Решить уравнение:

lg(x+1)+lg(x-1)=lg3

lg(x+1)(x-1)=lg 3

x²-1=3

x²=4

х1=2 х2= -2

При х= -2 выражение lg(x-1) не имеет смысла, т.е. х=-2 посторонний корень. Ответ: х=2.

Пример 2. Найти значение выражения (х+у). x

lg x+lg y =2 x

Найдем область определения: х0, у0.

lg(xy)=lg100 ↔ xy=100 ↔ 2xy=200

сложим два уравнения: х²+2ху+у²=425+200=625 ↔ (х+у)²=625

значит х+у =25 с у четом ОДЗ. Ответ: 25


  1. Рефлексия. Подведение итогов учебного занятия (5 мин)

Беседа со студентами по содержанию занятия. Вопросы для беседы:

  1. Какая была тема сегодняшнего занятия?

  2. Что нового вы узнали?

  3. Какая была цель занятия?

  4. Что получилось у вас сегодня?

  5. Что не получилось?

  6. Достигли ли мы поставленной цели?

  7. Инструктирование о выполнении домашнего задания

Изучить [1] гл. 12 занятие 2-4