Тема урока: Представление числовой информации с помощью систем счисления.
Цель
Тип урока: изучение нового материала
Ход урока
Организационный момент
Актуализация опорных знаний
Фронтальный опрос:
Какие существуют языки предоставления информации?
Что такое информация?
Что такое кодирование? Декодирование? Шифрование? Код?
Изучение нового материала
Системы счисления
В процессе эволюции человек использовал самые разные системы счисления (восьмеричная, шестнадцатеричная и т.д), но наиболее удобной на практике оказалась именно десятеричная система.
Наверное, это было как-то связано с физиологией человеческого тела – у него человека на руках и ногах по десять пальцев.
Но не будем спешить - ведь не все же системы используют такое счисление.
Например, электронные вычислительные машины чрезвычайно эффективно используют двоичную систему счисления, в которой используются лишь две цифры - это 0 и 1.
Причина проста – ведь с точки зрения техники машину с двумя состояниями проще создать, причем упрощаются различения этих состояний.
Совокупность методов и приёмов для записи чисел цифровыми знаками называют системой счисления.
Они разделяются на позиционные и непозиционные.
В позиционной системе счисления используются число в определённом порядке для обозначения каких-либо чисел, а значение каждого символа зависит расположения этого символа по отношению к другим в том же числе. Пример - арабская десятичная система счисления.
В непозиционной системе все наоборот - значение каждого символа не зависит от его расположения по отношению к другим в том же числе.
Двоичная система счисления
И так, как уже было сказано, для компьютера самая подходящая система счисления – двоичная. В такой системе используются лишь два символа - 0 и 1.
И этот метод отлично «дружит» с техническими данными различных цифровых схем. Оказалось, что представлять разные составляющие информации двумя состояниями очень удобно:
Тело намагничено или размагничено (дискеты, жесткие диски магнитные ленты)
Отверстие есть или нет (перфокарта)
Уровень сигнала большой или маленький
Черный цвет или белый
Для отображения таких состояний в цифровых системах нужно иметь электросхемы, принимающие два состояния и четко различающие значения электрической величины - потенциала или тока. Каждому из таких значений соответствует или 0 или 1 (обычно «0» представляет низкий уровень потенциала, а «1» – высокий).
Простота создания электросхем с двумя электрическими состояниями и есть причиной того, что двоичное представление чисел «лидирует» в мире современной цифровой техники.
Также существуют термины, широко используемые в вычислительной сфере - бит, байт, слово.
Бит – это один двоичный разряд. Крайний слева бит числа - старший разряд (наибольший вес), крайний справа – младший (наименьший вес).
Восьмибитовая единица есть байт.
Современные компьютеры перерабатывают информацию порциями (словами) по 8, 16 или 32 бита (1, 2 и 4 байта) и т.д.
Перевод чисел из одной системы счисления в другую
При переводе чисел, например, из десятичной системы в двоичную, используется метод деления в столбик. Попробуем проделать такую операцию с числом 567.

При деление 567 на 2 выходит целое 283 и остаток 1.
Проведем то же действие с числом 283 - целое 141, остаток 1.
Снова делим полученное целое число на 2 - и так до тех пор, пока целое число не станет меньше делителя.
А для того, чтобы получить число в двоичной системе счисления, нужно записать последнее целое число (в нашем случае это 1) и приписать к нему все полученные в во время деления остатки в обратном порядке.
Выходит, что число в десятеричной системе счисления 567 будет, выглядит в двоичной как 1000110111.
А теперь, попробуем перевести из двоичной системы в десятеричную: 101101102 = (1·27)+(0·26)+(1·25)+(1·24)+(0·23)+(1·22)+(1·21)+(0·20) = 128+32+16+4+2 = 18210
Систематизация полученных знаний
Самостоятельная работа
Перевести из десятеричной системы в двоичную:
23, 54, 789, 3456, 6578, 891234
Перевести из двоичной системы в десятеричную систему.
10001112, 10000012, 1110100002
Ответы: 71, 65, 464
Итог урока
Вопросы
1. Что такое система счисления?
2. Позиционные и непозиционные системы счисления.
3. Что представляет собой двоичная система счисления?
4. Как можно перевести число из десятичной системы в двоичную?
VI. Домашнее задание
Решить задания №9, 10 стр. 204
Учить определения