СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Презентация по алгебре по теме "Рациональные числа" (8 класс)

Категория: Математика

Нажмите, чтобы узнать подробности

Данная презентация  поможет учителю интересно провести урок алгебры по теме "Рациональные числа".

Просмотр содержимого документа
«Презентация по алгебре по теме "Рациональные числа" (8 класс)»

Обухова Наталия Семеновна, МОУ СОШ №17 г.Заволжья Нижегородской области

Обухова Наталия Семеновна, МОУ СОШ №17 г.Заволжья Нижегородской области

Для счета предметов используются числа, которые называются  натуральными .  Для обозначения множества  натуральных чисел употребляется буква   N   - первая буква латинского слова  Naturalis  - «естественный», «натуральный» N - натуральные 1 , 2, 3, 4, 5, …

Для счета предметов используются числа, которые называются натуральными . Для обозначения множества натуральных чисел употребляется буква N - первая буква латинского слова Naturalis - «естественный», «натуральный»

N - натуральные

1 , 2, 3, 4, 5, …

Числа, им противоположные Натуральные числа 5 3 6 4 2 1 -5 -4 -3 -2 -6 -1 Целые

Числа,

им противоположные

Натуральные числа

5

3

6

4

2

1

-5

-4

-3

-2

-6

-1

Целые

Натуральные числа, числа им противоположные и число нуль, образуют множество  целых  чисел, которое обозначается Z - первой буквой немецкого слова  Zahl    - «число». Z - целые … , -3, -2, - 1 , 0, 1 , 2, 3, …

Натуральные числа, числа им противоположные и число нуль, образуют множество целых чисел, которое обозначается Z - первой буквой немецкого слова Zahl - «число».

Z - целые

… , -3, -2, - 1 , 0,

1 , 2, 3, …

Целые числа Дробные числа 58 10 9 -4 0 1 7,1 0,1 2/7 3,2 0,(2) Рациональные

Целые числа

Дробные числа

58

10

9

-4

0

1

7,1

0,1

2/7

3,2

0,(2)

Рациональные

Множество чисел, которое можно представить в виде , называется множеством  рациональных чисел   и обозначается буквой Q  - первой буквой французского  слова  Quotient   - «отношение». Есть также версия, что название рациональных чисел связано с латинским словом ratio – разум. Q - рациональные … , -3, -2, - 1 , 0, 1, 2, 3, … + дроби

Множество чисел, которое можно представить в виде , называется множеством рациональных чисел и обозначается буквой Q - первой буквой французского слова Quotient - «отношение». Есть также версия, что название рациональных чисел связано с латинским словом ratio – разум.

Q - рациональные

… , -3, -2, - 1 , 0, 1, 2, 3, …

+ дроби

 Отношения между множествами натуральных,  целых и рациональных чисел наглядно демонстрирует  геометрическая иллюстрация – круги Эйлера . N  Z  Q

Отношения между множествами натуральных,

целых и рациональных чисел наглядно демонстрирует

геометрическая иллюстрация круги Эйлера .

N  Z  Q

Математический символ   ∈    называют знаком принадлежности  ( элемент принадлежит множеству ) . «n  -  натуральное число» можно писать n ∈ N    «m  -  целое число» можно писать m ∈ Z  «r  -  рациональное число» можно писать r ∈ Q  

Математический символ   ∈   называют знаком принадлежности ( элемент принадлежит множеству ) .

«n - натуральное число»

можно писать n ∈ N  

«m - целое число»

можно писать m ∈ Z

«r - рациональное число»

можно писать r ∈ Q  

Математический символ ⊂  называют знаком включения ( одно множество содержится в другом ). «N - часть множества Z» можно писать N ⊂ Z , «Z - часть множества Q» можно писать  Z ⊂ Q  

Математический символ ⊂  называют знаком включения ( одно множество содержится в другом ).

«N - часть множества Z»

можно писать N ⊂ Z ,

«Z - часть множества Q»

можно писать Z ⊂ Q  

Множества обозначают большими буквами, элементы множества - маленькими буквами. «x  не принадлежит множеству X»  можно писать  x ∉ X «A  не является частью (подмножеством) B» можно писать  A  B .

Множества обозначают большими буквами,

элементы множества - маленькими буквами.

«x  не принадлежит множеству X» 

можно писать x ∉ X

«A  не является частью (подмножеством) B»

можно писать A  B .

N  Z  Q Число 5 - ? N, Z, Q Число -7 - ? Z, Q Z, Q Число -6,7  - ? Число  - ? Q

N  Z  Q

Число 5 - ?

N, Z, Q

Число -7 - ?

Z, Q

Z, Q

Число -6,7 - ?

Число - ?

Q

Переведите обыкновенные дроби в десятичные: = 0,375 – конечная десятичная дробь Если в знаменателе стоят 2, 5, их произведение или произведение комбинацийэтих чисел – всегда КОНЕЧНАЯ ДЕСЯТИЧНАЯ ДРОБЬ!

Переведите обыкновенные дроби в десятичные:

= 0,375 – конечная десятичная дробь

Если в знаменателе стоят 2, 5, их произведение или произведение комбинацийэтих чисел – всегда КОНЕЧНАЯ ДЕСЯТИЧНАЯ ДРОБЬ!

Переведите обыкновенные дроби в десятичные: = 0,272727272727272727… - бесконечная периодическая десятичная дробь Для краткости написания – ПЕРИОД (круглые скобки) 0,272727272727272727…= 0,(27)

Переведите обыкновенные дроби в десятичные:

= 0,272727272727272727… - бесконечная периодическая десятичная дробь

Для краткости написания – ПЕРИОД (круглые скобки)

0,272727272727272727…= 0,(27)

Прочитайте дроби:  0,(2) 2) 2,(21) 3) 1,(1)  0,(2) 2) 2,(21) 3) 1,(1)  4) -3,0(3) 5) -0,1(6) 6) 12,45(7)  4) -3,0(3) 5) -0,1(6) 6) 12,45(7) чисто периодические смешанные периодические

Прочитайте дроби:

  • 0,(2) 2) 2,(21) 3) 1,(1)
  • 0,(2) 2) 2,(21) 3) 1,(1)

4) -3,0(3) 5) -0,1(6) 6) 12,45(7)

4) -3,0(3) 5) -0,1(6) 6) 12,45(7)

чисто периодические

смешанные периодические

Любое рациональное число можно записать в виде бесконечной десятичной периодической дроби? N  Z  Q 5 = 5,000… = 5,(0) -8,37 = -8,37000… = -8,37(0) Дроби - ?

Любое рациональное число можно записать в виде бесконечной десятичной периодической дроби?

N  Z  Q

5 = 5,000… = 5,(0)

-8,37 = -8,37000… = -8,37(0)

Дроби - ?

Алгоритмы перевода рациональных чисел  в бесконечную десятичную периодическую дробь = 0,375 = 0,375(0) = 0,272727… = 0,(27) Делим числитель на знаменатель

Алгоритмы перевода рациональных чисел

в бесконечную десятичную периодическую дробь

= 0,375 = 0,375(0)

= 0,272727… = 0,(27)

Делим числитель

на знаменатель

Любое рациональное число можно записать в виде бесконечной десятичной периодической дроби?

Любое рациональное число можно записать в виде бесконечной десятичной периодической дроби?

 Переведем б.п.д. дробь 0,(2) в обыкновенную  Пусть х = 0,(2) Это для чисто периодической !!! 10х  = 2,(2) 10х = 2,(2)   10 ( число цифр в периоде ) х = 0,(2) 10х – х = 2,(2) - 0,(2) 9х = 2 0,(2)

Переведем б.п.д. дробь 0,(2)

в обыкновенную

Пусть х = 0,(2)

Это для

чисто периодической !!!

10х = 2,(2)

10х = 2,(2)

 10 ( число цифр в периоде )

х = 0,(2)

10х – х = 2,(2) - 0,(2)

= 2

0,(2)

 Переведем б.п.д. дробь 0,4(6) в обыкновенную Это для смешанной периодической !!!  Пусть х = 0,4(6) 10х = 4,(6) 100х = 46,(6)   10 ( число цифр в периоде ) 10х = 4,(6) 100х – 10х = 46,(6) - 4,(6) 90х = 42 0,4(6) 21

Переведем б.п.д. дробь 0,4(6)

в обыкновенную

Это для

смешанной периодической !!!

Пусть х = 0,4(6)

10х = 4,(6)

100х = 46,(6)

 10 ( число цифр в периоде )

10х = 4,(6)

100х – 10х = 46,(6) - 4,(6)

90х = 42

0,4(6)

21