
Пояснительная записка.
Рабочая программа основного общего образования по алгебре составлена на основе Фундаментального ядра содержания общего образования и требований к результатам освоения
основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования. Примерной программы а также авторской программы общеобразовательных учреждений « Алгебра 7-9 классы» автор Ю.Н. Макарычев , Н.Г. Миндюк и другие, а также комлекта учебников по геометрии авторы Л.С. атанасян и др.
В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.
Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.
Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка не-
обходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники.С её помощью моделируются и изучаются явления и процессы, происходящие в природе.
Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки
алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.
Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.
Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.
Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.
Изучение алгебры позволяет формировать умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.
В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению.
Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание
красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.
Содержание курса
Рациональные числа. Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение m
n , где m — целое число, n — натуральное. Степень с целым показателем.Действительные числа. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем.
Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.Множество действительных чисел; представление действии тельных чисел бесконечными десятичными дробями. Сравнение действительных чисел на координатной прямой. Числовые промежутки.
Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной),длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество. Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители. Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства. Рациональные выражения и их преобразования. Доказательство тождеств. Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям. Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.
Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений. Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.
Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения истем нелинейных уравнений с двумя переменными. Решение текстовых задач алгебраическим способом.
Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой;
условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными. Неравенства. Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.
ФУНКЦИИ
Основные понятия. Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.
Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций y = y , y = x 3 , у = | x |.
Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.
ВЕРОЯТНОСТЬ И СТАТИСТИКА
Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании. Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события.
Статистический подход к понятию вероятности. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки
и факториал.
ЛОГИКА И МНОЖЕСТВА
Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых
множеств. Пустое множество и его обозначение. Подмножество. объединение и пересечение множеств, разность множеств.Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.
Элементы логики. Понятие о равносильности, следовании,употребление логических связок если ..., то ..., в том и толь-ко в том случае, логические связки и, или.
МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ
История формирования понятия числа: натуральные числа,дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы
записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел
и нуля. Л. Магницкий. Л. Эйлер.
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.Изобретение метода координат, позволяющего переводить
геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.Истоки теории вероятностей: страховое дело, азартные
игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА АЛГЕБРЫ В 7—9 КЛАССАХ
РАЦИОНАЛЬНЫЕ ЧИСЛА
Выпускник научится:
1) понимать особенности десятичной системы счисления;
2) владеть понятиями, связанными с делимостью натураль-
ных чисел;
3) выражать числа в эквивалентных формах, выбирая наи-
более подходящую в зависимости от конкретной ситуации;
4) сравнивать и упорядочивать рациональные числа;
5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять не-
сложные практические расчёты.
Выпускник получит возможность:
7) познакомиться с позиционными системами счисления с основаниями, отличными от 10;
8) углубить и развить представления о натуральных числах и свойствах делимости;
9) научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА
Выпускник научится:
1) использовать начальные представления о множестве действительных чисел;
2) владеть понятием квадратного корня, применять его в вычислениях.
Выпускник получит возможность:
3) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
4) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ
Выпускник научится:
1) использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
2) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
3) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ
Выпускник научится:
1) владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
3) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
4) выполнять разложение многочленов на множители. Выпускник получит возможность:
5) научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
6) применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
УРАВНЕНИЯ
Выпускник научится:
1) решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
2) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
Выпускник получит возможность:
4) овладеть специальными приёмами решения уравненийи систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных
предметов, практики;15
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА АЛГЕБРЫ
5) применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
НЕРАВЕНСТВА
Выпускник научится:
1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
2) решать линейные неравенства с одной переменной и их
системы; решать квадратные неравенства с опорой на графические представления;
3) применять аппарат неравенств для решения задач из различных разделов курса.
Выпускник получит возможность научиться:
4) разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных
предметов, практики;
5) применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
ОСНОВНЫЕ ПОНЯТИЯ. ЧИСЛОВЫЕ ФУНКЦИИ
Выпускник научится:
1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);
2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
Выпускник получит возможность научиться:
4) проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более слож-
ные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
5) использовать функциональные представления и свой-
ства функций для решения математических задач из раз-
личных разделов курса.
ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ
Выпускник научится:
1) понимать и использовать язык последовательностей (термины, символические обозначения);
2) применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе
с контекстом из реальной жизни.
Выпускник получит возможность научиться:
3) решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
4) понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.
ОПИСАТЕЛЬНАЯ СТАТИСТИКА
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
СЛУЧАЙНЫЕ СОБЫТИЯ И ВЕРОЯТНОСТЬ
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
КОМБИНАТОРИКА
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым
специальным приёмам решения комбинаторных задач.
Тематическое планирование
7 класс
№ | Содержание | Количество часов |
Глава1. Выражения, тождества, уравнения 22ч. |
1-5 | Выражения | 5 |
| Числовые выражения | 1 |
| Нахождение значений числовых выажений | 1 |
| Выражения с переменными | 1 |
| Нахождение значений выражений с переменными | 1 |
| Сравнение значений выражений с переменными | 1 |
6-9 | Преобразование выражений | 4 |
| Свойства действий над числами. Применение свойств | 1 |
| Тождества | 1 |
| Тождественные преобразования | 1 |
| Применение тождественных преобразований | 1 |
10 | Контрольная работа №1 | 1 |
11-17 | Уравнения с одной переменной | 7 |
18-21 | Статистические характеристики | 4 |
22 | Контрольная работа №2 | 1 |
Глава2. Функции 11 ч. |
23-27 | Функции и их графики | 5 |
28-32 | Линейная функция | 5 |
33 | Контрольная работа №3 | 1 |
Глава №3 Степень с натуральным показателем 11ч. |
34-38 | Степень и ее свойства | 5 |
39-43 | Одночлены | 5 |
44 | Контрольная работа№4 | 1 |
Глава №4 Многочлены 17. |
45-47 | Сумма и разность многочленов | 3 |
48-53 | Произведение одночлена и многочлена | 6 |
54 | Контрольная работа №5 | 1 |
55-60 | Произведение многочленов | 6 |
61 | Контрольная работа№6 | 1 |
Глава №5. Формулы сокращенного умножения 19 ч. |
62-66 | Квадрат суммы и квадрат разности | 5 |
67-72 | Разность квадратов. Сумма и разность кубов | 6 |
73 | Контрольная работа №7 | 1 |
74-79 | Преобразование целых выражений | 6 |
80 | Контрольная работа №8 | 1 |
Глава №6. Системы линейных уравнений 16 ч. |
81-85 | Линейные уравнения с двумя переменными и их системы. | 5 |
86-95 | Решение систем линейных уранений | 10 |
96 | Контрольная работа №9 | 1 |
97-102 | Поторение 6ч. |
| Итоговый зачет | 1 |
| Итоговая контрольная работа | 2 |
| | |
Итого | 102 часов |