СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Производная функции

Категория: Математика

Нажмите, чтобы узнать подробности

ПРОИЗВОДНАЯ ФУНКЦИИ. (Раздел «Начала математического анализа»)

ДЕЯТЕЛЬНОСТНАЯ КАРТА УЧЕБНОГО ЗАНЯТИЯ

Профессии: 15.01.20 Слесарь по контрольно-измерительным приборам и автоматике, 09.01.03 Мастер по обработке цифровой информации, 23.01.03 Автомеханик, 09.01.01 Наладчик аппаратного и программного обеспечения Учебные группы: КИП-11, М-11, А-11, Н-11 Учебная дисциплина: ООПу.04 Математика Тема учебного занятия: Производная функции. Тип урока: урок «открытия» новых знаний Вид урока: лекция-беседа  

Просмотр содержимого документа
«Производная функции»

ПРОИЗВОДНАЯ ФУНКЦИИ.

(Раздел «Начала математического анализа»)


ДЕЯТЕЛЬНОСТНАЯ КАРТА УЧЕБНОГО ЗАНЯТИЯ


Профессии: 15.01.20 Слесарь по контрольно-измерительным приборам и автоматике, 09.01.03 Мастер по обработке цифровой информации, 23.01.03 Автомеханик, 09.01.01 Наладчик аппаратного и программного обеспечения

Учебные группы: КИП-11, М-11, А-11, Н-11

Учебная дисциплина: ООПу.04 Математика

Тема учебного занятия: Производная функции.

Тип урока: урок «открытия» новых знаний

Вид урока: лекция-беседа

Средства обучения:

  • технические: мультимедийный проектор, персональный компьютер;

  • информационно-коммуникационные: электронная презентация.

Цели урока:

методическая: использование объяснительно-иллюстративного метода обучения с целью формирования математического мышления студентов;

образовательная: создание условий для овладения знаниями о последовательностях и пределах последовательностей;

развивающая: развитие умений планировать, анализировать, выдвигать гипотезы по решению заданий, применять полученные знания для выполнения упражнений;

воспитательная: воспитание интереса к изучению математики, математической культуры студентов.

Прогнозируемые результаты:

1) предметные:

  • сформированность знаний о производной функции;

  • владение умением решать задачи на производные функции;

2) метапредметные:

  • регулятивные:

  • умение ставить перед собой цель, видеть ожидаемый результат работы;

  • умение рационально распределять рабочее время;

  • умение объективно оценивать свои возможности, анализировать свои результаты, корректировать свои действия;

  • владение навыками познавательной рефлексии;

  • познавательные:

  • умение осуществлять поиск и отбор необходимой информации;

  • умение сопоставлять и анализировать, выделять в тексте базовые и вспомогательные концепты, опорные понятия, тезисы, структурировать их взаимосвязь;

  • умение структурировать полученную информацию;

  • умение анализировать и обобщать информацию;

  • коммуникативные:

  • умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности;

  • умение выражать свои мысли с достаточной полнотой и точностью.

Образовательные технологии: традиционное обучение.

Формы организации обучения: фронтальная, индивидуальная.

Методы обучения и контроля:

  • вербальные: беседа;

  • практические: метод сравнения, метод анализа и структурирования.

  • методы контроля и самоконтроля: устный контроль, самоконтроль.


Нормативный документ

Федеральный государственный образовательный стандарт среднего общего образования (утв. приказом Министерства образования и науки Российской Федерации (Минобрнауки России) от 17 мая 2012 г. № 413 г.). – М.: Министерство образования и науки РФ, – 2012.


Образовательные ресурсы:

Основная литература

  1. Башмаков М. И. Математика: учебник для студ. учреждений сред. проф. образования. − М.: Издательский центр «Академия», 2018. – 256 с.

  2. Башмаков М. И. Математика. Сборник задач профильной направленности: учеб. пособие для студ. учреждений сред. проф. образования. − М.: Издательский центр «Академия», 2014. – 416 с.

Дополнительная литература

  1. Алимов Ш.А., Колягин Ю.М. Алгебра и начала математического анализа (базовый и углубленный уровни).10—11 классы. Учебник. − М.: Просвещение, 2014. – 464 с.

  2. Атанасян Л.С. Геометрия. 10 − 11 классы: учебник для общеобразовательных учреждений: базовый и профильный уровни / Атанасян Л.С., Бутузов В.Ф. и др. – М.: Просвещение, 2013. – 255 с.

  3. Богомолов Н.В. Практические занятия по математике: Учеб. пособие для техникумов / Н.В. Богомолов. – М.: Высш. шк., 2013. – 495 с.

  4. Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика (Книга 1): Учебное пособие. – М.: Издательство «Новая волна», 2013. – 656 с.

  5. Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика (Книга 2): Учебное пособие. – М.: Издательство «Новая волна», 2013. – 592 с.

  6. Никольский С.М. Алгебра и начала анализа: учебник для 10 класса общеобразоват. учреждений: базовый и профильный уровни / С.М. Никольский, М.К. Потапов. – М.: Просвещение, 2013. – 430 с.

  7. Никольский С.М. Алгебра и начала анализа: учебник для 11 класса общеобразоват. учреждений: базовый и профильный уровни / С.М. Никольский, М.К. Потапов. – М.: Просвещение, 2013. – 464 с.


Интернет-ресурсы:

  1. Федеральный центр информационно-образовательных ресурсов [Электронный ресурс] URL: www. fcior. edu. ru

  2. Единая коллекции цифровых образовательных ресурсов [Электронный ресурс] URL: www. school-collection. edu. ru


Научно-методические ресурсы:

  1. Инновационные педагогические технологии: учебное пособие/ Михелькевич В.Н., Нестеренко В.М., Кравцова П.Г. – Самар. гос. тех. ун-т Самара, 2001. – 89 с.

  2. Кульневич С.В., Лакоценина Т.П. Современный урок. Часть 1: Научно-практич. пособие для учителей, методистов, руководителей учебных заведений, студентов пед. заведений, слушателей ИПК. – Ростов н/Д: Учитель, 2005. – 288 с.

  3. Кульневич С.В., Лакоценина Т.П. Современный урок. Часть 3: Научно-практич. пособие для учителей, методистов, руководителей учебных заведений, студентов пед. заведений, слушателей ИПК. – Ростов н/Д: Учитель, 2007. – 288 с.

  4. Махмутов М.И. Проблемное обучение: Основные вопросы теории. – М.: Педагогика, 1975. – 368 с.


Основные термины и понятия: производная функции.




ПЛАН УЧЕБНОГО ЗАНЯТИЯ


Содержание учебного материала:

1) Сформированность знаний о вычислениях производной функции.

2) Закрепление теоретического материала по теме с помощью решения упражнений.


  1. Этап мотивации (самоопределения) к учебной деятельности (2 мин)

Преподаватель приветствует студентов, создает деловую обстановку, настраивает на продуктивную мыслительную деятельность.

  1. Этап актуализации опорных знаний. Целеполагание (15 мин)

Преподаватель задает вопросы студентам:

  1. Какие вы знаете производные функции?

  2. Приведите пример производной функции.

Студенты отвечают на эти вопросы, вспоминая знания, полученные на предыдущем занятии.

Формулирование темы и целей учебного занятия.

  1. Работа над новой темой («открытие» нового знания) (48 мин)

Алгоритм работы над «открытием» нового знания:

Формулирование преподавателем определения производной функции.

Предел отношения приращения функции к приращению аргумента, если приращение аргумента стремится к нулю (и этот предел существует), называется производной этой функции. 

.

(Часто вместо   пишется  .)

Итак,  .

Иногда используются обозначения   или  .

Пример:

1)  ;

 

 

2) .


Задача 1 (о скорости движения). По прямой, на которой заданы начало отсчёта, единица измерения (метр) и направление, движется некоторое тело (материальная точка). Закон движения задан формулой  , где   — время (в секундах),   — положение тела на прямой (координата движущейся материальной точки) в момент времени   по отношению к началу отсчёта (в метрах). Найти скорость движения тела в момент времени   (в м/с).

Решение. Предположим, что в момент времени   тело находилось в точке  .

Дадим аргументу   приращение   и рассмотрим ситуацию в момент времени  . Координата материальной точки станет другой, тело в этот момент будет находиться в точке  .

Значит, за   секунд тело переместилось из точки   в точку  . Имеем:  . Полученную разность мы назвали приращением функции:  . Итак,  (м). Нетрудно найти среднюю скорость 𝑣ср движения тела за промежуток времени   (м/с).

 А что такое скорость 𝑣(𝑡) в момент времени 𝑡 (её называют мгновенной скоростью)? Можно сказать так: это средняя скорость движения за промежуток времени   при условии, что   выбирается всё меньше и меньше; точнее: при условии, что  . Это значит, что  .

Итак,

.

Задача 2 (о касательной к графику функции). Дан график функции  . На нём выбрана точка  ), в этой точке к графику функции проведена касательная (мы предполагаем, что она существует). Найти угловой коэффициент касательной.

Решение. Дадим аргументу приращение   и рассмотрим на графике точку   с абсциссой  . Ордината точки   равна  . Угловой коэффициент секущей  , т. е. тангенс угла между секущей и осью  , вычисляется по формуле  .

Если мы теперь устремим   к нулю, то точка   начнёт приближаться по кривой к точке  . Касательную мы охарактеризовали как предельное положение секущей при этом приближении. Значит, естественно считать, что угловой коэффициент касательной   будет вычисляться по формуле  . Используя приведённую выше формулу для  , получаем:

.


  1. Включение нового знания в систему имеющихся знаний (20 мин)

Примеры

Физический (механический) смысл производной состоит в следующем. Если   — закон прямолинейного движения тела, то производная выражает мгновенную скорость в момент времени  :

.

Геометрический смысл производной состоит в следующем. Если к графику функции   в точке с абсциссой   можно провести касательную, не параллельную оси  , то   выражает угловой коэффициент касательной:

.

Поскольку  , то верно равенство  .

Алгоритм нахождения производной для функции 

1. Зафиксировать значение  , найти  .

2. Дать аргументу   приращение  , перейти в новую точку  , найти  .

3. Найти приращение функции:  .

4. Составить отношение 

5. Вычислить  . Этот предел и есть  .


  1. Рефлексия. Подведение итогов учебного занятия (5 мин)

Беседа со студентами по содержанию занятия. Вопросы для беседы:

  1. Какая была тема сегодняшнего занятия?

  2. Что нового вы узнали?

  3. Какая была цель занятия?

  4. Что получилось у вас сегодня?

  5. Что не получилось?

  6. Достигли ли мы поставленной цели?

  7. Инструктирование о выполнении домашнего задания

Изучить [1] гл. 9 занятие 3-5