СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа курса "Занимательная математика" для 3 класса.

Категория: Внеурочка

Нажмите, чтобы узнать подробности

Данная рабочая программа может быть использована при организации внеклассной работы по математике в 3 классе. 

Просмотр содержимого документа
«Рабочая программа курса "Занимательная математика" для 3 класса.»



«Рассмотрено»

Руководитель МО

_________/_____________

Протокол №_______от

«_____»______________2014


«Согласовано»

Зам. директора по УВР

МБОУ Бутурлиновская СОШ

_________/_____________

«_____»______________2014


«Утверждаю»

Директор

МБОУ Бутурлиновская СОШ

Штельцер И.Е.

Приказ №_______от

«_____»______________2014







Рабочая программа



курса внеурочной деятельности

«Занимательная математика»

(общеинтеллектуальное направление)

для 3 класса



Рабочая программа курса внеурочной деятельности

«Занимательная математика».

Пояснительная записка.

Реализация задачи воспитания любознательного, активно познающего мир младшего школьника, обучение решению математических задач творческого и поискового характера будут проходить более успешно, если урочная деятельность дополнится внеурочной работой. В этом может помочь курс «Занимательная математика», расширяющий математический кругозор и эрудицию учащихся, способствующий формированию познавательных универсальных учебных действий.

Курс предназначен для развития математических способностей учащихся, для формирования элементов логической и алгоритмической грамотности, коммуникативных умений младших школьников с применением коллективных форм организации занятий и использованием современных средств обучения. Создание на занятиях ситуаций активного поиска, предоставление возможности сделать собственное «открытие», знакомство с оригинальными путями рассуждений, овладение элементарными навыками исследовательской деятельности позволят обучающимся реализовать свои возможности, приобрести уверенность в своих силах.

Содержание курса «Занимательная математика» направлено на воспитание интереса к предмету, развитие наблюдательности, геометрической зоркости, умения анализировать, догадываться, рассуждать, доказывать, решать учебную задачу творчески. Содержание может быть использовано для показа учащимся возможностей применения тех знаний и умений, которыми они овладевают на уроках математики.

Общая характеристика кружка.

«Занимательная математика» входит во внеурочную деятельность по направлению «Общеинтеллектуальное развитие личности». Программа предусматривает включение задач и заданий, трудность которых определяется не столько математическим содержанием, сколько новизной и необычностью математической ситуации, что способствует появлению у учащихся желания отказаться от образца, проявить самостоятельность, а также формированию умений работать в условиях поиска и развитию сообразительности, любознательности.

В процессе выполнения заданий дети учатся видеть сходство и различия, замечать изменения, выявлять причины и характер изменений и на основе этого формулировать выводы. Совместное с учителем движение от вопроса к ответу — это возможность научить ученика рассуждать, сомневаться, задумываться, стараться самому находить выход-ответ.

Курс «Занимательная математика» учитывает возрастные особенности младших школьников и поэтому предусматривает организацию подвижной деятельности учащихся, которая не мешает умственной работе. С этой целью в занятия включены подвижные математические игры, последовательная смена одним учеником «центров» деятельности в течение одного занятия; что приводит к передвижению учеников по классу в ходе выполнения математических заданий на листах бумаги, расположенных на стенах классной комнаты, и др. Во время занятий важно поддерживать прямое общение между детьми (возможность подходить друг к другу, переговариваться, обмениваться мыслями). При организации занятий целесообразно использовать принципы игр «Ручеёк», «Пересадки», принцип свободного перемещения по классу, работу в группах и в парах постоянного и сменного состава. Некоторые математические игры и задания могут принимать форму состязаний, соревнований между командами.


Место курса в учебном плане.

Программа рассчитана на 18 ч в год с проведением занятий один раз в неделю во втором полугодии продолжительностью 30–35 мин. Содержание курса отвечает требованию к организации внеурочной деятельности: соответствует курсу «Математика» и не требует от учащихся дополнительных математических знаний. Тематика задач и заданий отражает реальные познавательные интересы детей, в программе содержатся полезная и любопытная информация, занимательные математические факты, способные дать простор воображению.

Ценностными ориентирами содержания факультатива являются:

— формирование умения рассуждать как компонента логической грамотности;

— освоение эвристических приёмов рассуждений;

— формирование интеллектуальных умений, связанных с выбором стратегии решения, анализом ситуации, сопоставлением данных;

— развитие познавательной активности и самостоятельности учащихся;

— формирование способностей наблюдать, сравнивать, обобщать, находить простейшие закономерности, использовать догадки, строить и проверять простейшие гипотезы;

—формирование пространственных представлений и пространственного воображения;

— привлечение учащихся к обмену информацией в ходе свободного общения на занятиях.


Личностные, метапредметные и предметные результаты освоения программы курса.

Личностными результатами изучения данного курса являются:

— развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;

— развитие внимательности, настойчивости, целеустремлённости, умения преодолевать трудности — качеств весьма важных в практической деятельности любого человека;

— воспитание чувства справедливости, ответственности;

— развитие самостоятельности суждений, независимости и нестандартности мышления.

Метапредметные результаты представлены в содержании программы в разделе «Универсальные учебные действия».

Предметные результаты отражены в содержании программы.


Содержание программы

Числа. Арифметические действия. Величины.

Названия и последовательность чисел от 1 до 20. Подсчёт числа точек на верхних гранях выпавших кубиков.

Числа от 1 до 100. Решение и составление ребусов, содержащих числа.

Сложение и вычитание чисел в пределах 100. Таблица умножения однозначных чисел и соответствующие случаи деления.

Числовые головоломки: соединение чисел знаками действия так, чтобы в ответе получилось заданное число, и др. Поиск нескольких решений. Восстановление примеров: поиск цифры, которая скрыта. Последовательное выполнение арифметических действий: отгадывание задуманных чисел.

Числа от 1 до 1000. Сложение и вычитание чисел в пределах 1000.

Числа-великаны (миллион и др.). Числовой палиндром: число, которое читается одинаково слева направо и справа налево.

Поиск и чтение слов, связанных с математикой (в таблице, ходом шахматного коня и др.).

Занимательные задания с римскими цифрами.

Время. Единицы времени. Масса. Единицы массы. Литр.

Форма организации обучения — математические игры:

— «Весёлый счёт» — игра-соревнование; игры с игральными кубиками. Игры: «Чья сумма больше?», «Лучший лодочник», «Русское лото», «Математическое домино», «Не собьюсь!», «Задумай число», «Отгадай задуманное число», «Отгадай число и месяц рождения»;

— игры: «Волшебная палочка», «Лучший счётчик», «Не подведи друга», «День и ночь», «Счастливый случай», «Сбор плодов», «Гонки с зонтиками», «Магазин», «Какой ряд дружнее?»;

— игры с мячом: «Наоборот», «Не урони мяч»;

—— математические пирамиды: «Сложение в пределах 10; 20; 100», «Вычитание в пределах 10; 20; 100», «Умножение», «Деление»;

— работа с палитрой — основой с цветными фишками и комплектом заданий к палитре по темам: «Сложение и вычитание до 100» и др.;

— игры: «Крестики-нолики», «Крестики-нолики на бесконечной доске», «Морской бой» и др., конструкторы «Часы», «Весы» из электронного учебного пособия «Математика и конструирование».



Универсальные учебные действия:

— сравнивать разные приёмы действий, выбирать удобные способы для выполнения конкретного задания;

— моделировать в процессе совместного обсуждения алгоритм решения числового кроссворда; использовать его в ходе самостоятельной работы;

— применять изученные способы учебной работы и приёмы вычислений для работы с числовыми головоломками;

— анализировать правила игры, действовать в соответствии с заданными правилами; — включаться в групповую работу, участвовать в обсуждении проблемных вопросов, высказывать собственное мнение и аргументировать его;

—выполнять пробное учебное действие, фиксировать индивидуальное затруднение в пробном действии;

— аргументировать свою позицию в коммуникации, учитывать разные мнения, использовать критерии для обоснования своего суждения;

— сопоставлять полученный (промежуточный, итоговый) результат

с заданным условием;

—контролировать свою деятельность: обнаруживать и исправлять ошибки.






Мир занимательных задач

Задачи, допускающие несколько способов решения. Задачи с недостаточными, некорректными данными, с избыточным составом условия. Последовательность шагов (алгоритм) решения задачи.

Задачи, имеющие несколько решений. Обратные задачи и задания.

Ориентировка в тексте задачи, выделение условия и вопроса, данных и искомых чисел (величин). Выбор необходимой информации, содержащейся в тексте задачи, на рисунке или в таблице, для ответа на заданные вопросы.

Старинные задачи. Логические задачи. Задачи на переливание. Составление аналогичных задач и заданий.

Нестандартные задачи. Использование знаково-символических средств для моделирования ситуаций, описанных в задачах.

Задачи, решаемые способом перебора. «Открытые» задачи и задания.

Задачи и задания по проверке готовых решений, в том числе неверных.

Анализ и оценка готовых решений задачи, выбор верных решений.

Задачи на доказательство, например найти цифровое значение букв в условной записи: СМЕХ + ГРОМ = ГРЕМИ и др. Обоснование выполняемых и выполненных действий.

Решение олимпиадных задач международного конкурса «Кенгуру».


Универсальные учебные действия:

— анализировать текст задачи: ориентироваться в тексте, выделять условие и вопрос, данные и искомые числа (величины);

— искать и выбирать необходимую информацию, содержащуюся в тексте задачи, на рисунке или в таблице, для ответа на заданные вопросы;

—моделировать ситуацию, описанную в тексте задачи, использовать соответствующие знаково-символические средства для моделирования ситуации;

— конструировать последовательность шагов (алгоритм) решения задачи;

— объяснять (обосновывать) выполняемые и выполненные действия;

—воспроизводить способ решения задачи;

— сопоставлять полученный (промежуточный, итоговый) результат с заданным условием;

— анализировать предложенные варианты решения задачи, выбирать из них верные, выбирать наиболее эффективный способ решения задачи;

— оценивать предъявленное готовое решение задачи (верно, неверно);

— участвовать в учебном диалоге, оценивать процесс поиска и результат решения задачи;

— конструировать несложные задачи.

Геометрическая мозаика

Пространственные представления. Понятия «влево», «вправо», «вверх», «вниз». Маршрут передвижения. Точка начала движения; число, стрелки 1→ 1↓, указывающие направление движения. Проведение линии по заданному маршруту (алгоритму) — «путешествие точки» (на листе в клетку). Построение собственного маршрута (рисунка) и его описание.

Геометрические узоры. Закономерности в узорах. Симметрия. Фигуры, имеющие одну и несколько осей симметрии.

Расположение деталей фигуры в исходной конструкции (треугольники, таны, уголки, спички). Части фигуры. Место заданной фигуры в конструкции. Расположение деталей. Выбор деталей в соответствии с заданным контуром конструкции. Поиск нескольких возможных вариантов решения. Составление и зарисовка фигур по собственному замыслу.

Разрезание и составление фигур. Деление заданной фигуры на равные по площади части.

Поиск заданных фигур в фигурах сложной конфигурации.

Решение задач, формирующих геометрическую наблюдательность.

Распознавание (нахождение) окружности на орнаменте. Составление (вычерчивание) орнамента с использованием циркуля (по образцу, по собственному замыслу).

Объёмные фигуры: цилиндр, конус, пирамида, шар, куб. Моделирование из проволоки. Создание объёмных фигур из развёрток: цилиндр, призма шестиугольная, призма треугольная, куб, конус, четырёхугольная пирамида, октаэдр, параллелепипед, усечённый конус, усечённая пирамида, пятиугольная пирамида, икосаэдр (по выбору учащихся).

Форма организации обучения — работа с конструкторами:

—моделирование фигур из одинаковых треугольников, уголков;

—танграм: древняя китайская головоломка. «Сложи квадрат». «Спичечный» конструктор;

—конструкторы лего. Набор «Геометрические тела»;

—конструкторы «Танграм», «Спички», «Полимино», «Кубики», «Паркеты и мозаики», «Монтажник», «Строитель» и др. из электронного учебного пособия «Математика и конструирование».

Универсальные учебные действия:

— —ориентироваться в понятиях «влево», «вправо», «вверх», «вниз»;

— ориентироваться на точку начала движения, на числа и стрелки 1→ 1↓ и др., указывающие направление движения;

—проводить линии по заданному маршруту (алгоритму);

—выделять фигуру заданной формы на сложном чертеже;

—анализировать расположение деталей (танов, треугольников, уголков, спичек) в исходной конструкции;

— составлять фигуры из частей, определять место заданной детали в конструкции;

—выявлять закономерности в расположении деталей; составлять детали в соответствии с заданным контуром конструкции;

— сопоставлять полученный (промежуточный, итоговый) результат с заданным условием;

— объяснять (доказывать) выбор деталей или способа действия при заданном условии;

— анализировать предложенные возможные варианты верного решения;

—моделировать объёмные фигуры из различных материалов (проволока, пластилин и др.) и из развёрток;

— осуществлять развёрнутые действия контроля и самоконтроля: сравнивать построенную конструкцию с образцом.



























Календарно – тематическое планирование

Наименование разделов, тем

Всего

часов

Количество часов по темам

Дата проведения

Характеристика деятельности обучающихся

Математика – царица наук.

5 ч



Расширение знаний о науке математике, истории и записи чисел, практическом применении математических знаний. Построение «математических» пирамид: «Сложение и вычитание в пределах 100».Решение задач с помощью графов, по принципу Дирихле, логических задач, олимпиадных задач.

Старинные задачи.


16.01

Задачи, решаемые с помощью графов.


23.01

Задачи, решаемые на принцип Дирихле.


30.01

Логические задачи.


06.02

Олимпиадные задачи.


1 ч

13.02

Занимательная геометрия.

7 ч



Составление геометрических узоров. Изучение признаков симметрии. Составление картинки с заданным разбиением на части; с частично заданным разбиением на части, без разбиения.

Геометрические узоры. Симметрия.


1 ч

20.02

Танграм: древняя китайская головоломка.


27.02

Задачи международного конкурса «Кенгуру».


06.03

Математическая карусель.


1 ч

13.03

Решение задач международного конкурса «Кенгуру». Работа в «центрах» деятельности: «Конструкторы», «Математические головоломки», «Занимательные головоломки». Создание фигур из развёрток: пирамида, куб, конус. Знакомство со старинными мерами длины, массы, времени.

Создание объёмных фигур из развёрток.


1 ч

20.03

Старинные меры длины, массы, времени.


03.04

Играем, измеряем, периметр вычисляем.


10.04

Олимпиадные задания.

Задачи с экономическим содержанием.

Олимпиадные задачи.

Воображаем, наблюдаем, угадываем.

Математические пазлы.

Играем, измеряем, площадь вычисляем.

Итоговое занятие. Что узнали. Чему научились.









1 ч





17.04

24.04

01.05

08.05

15.05

22.05

Решение задач Фомы Усердова с экономическим содержанием. Решение олимпиадных задач. Игры «Установи закономерность», «Чего не хватает», «Пословицы с секретом», «Прогноз погоды», «Делим шоколадку». Составление математических пазлов. Решение задач на нахождение площади фигур. Подведение итогов работы за год.