ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Изучение физики в образовательных учреждениях среднего (полного) общего образования направлено на достижение следующих целей:
• освоение знаний о методах научного познания природы; современной физической картине мира: свойствах вещества и поля, пространственно-временных закономерностях, динамических и статистических законах природы, элементарных частицах и фундаментальных взаимодействиях, строении и эволюции Вселенной; знакомство с основами фундаментальных физических теорий: классической механики, молекулярно-кинетической теории, термодинамики, классической электродинамики, специальной теории относительности, квантовой теории;
• овладение умениями проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, выдвигать гипотезы и строить модели, устанавливать границы их применимости;
• применение знаний по физике для объяснения явлений природы, свойств вещества, принципов работы технических устройств, решения физических задач, самостоятельного приобретения и оценки достоверности новой информации физического содержания, использования современных информационных технологий для поиска, переработки и предъявления учебной и научно-популярной информации по физике;
• развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний, выполнения экспериментальных исследований, подготовки докладов, рефератов и других творческих работ;
• воспитание духа сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента, обоснованности высказываемой позиции, готовности к морально-этической оценке использования научных достижений, уважения к творцам науки и техники, обеспечивающим ведущую роль физики в создании современного мира техники;
• использование приобретенных знаний и умений для решения практических, жизненных задач, рационального природопользования и защиты окружающей среды, обеспечения безопасности жизнедеятельности человека и общества.
Задачи учебного предмета
Содержание образования, представленное в основной школе, развивается в следующих направлениях:
формирования основ научного мировоззрения
развития интеллектуальных способностей учащихся
развитие познавательных интересов школьников в процессе изучения физики
знакомство с методами научного познания окружающего мира
постановка проблем, требующих от учащихся самостоятельной деятельности по их разрешению,вооружение школьника научным методом познания, позволяющим получать объективные знания об окружающем мире
Рабочая программа по физике для 10 класса составлена на основе
Конституции Российской Федерации; Федерального закона от 29.12. 2012 № 273-ФЗ «Об образовании в Российской Федерации»; приказа Минобразования России от 19.10.2009 №427 «О внесении изменений в федеральный компонент государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования, утвержденный приказом Министерства образования РФ от 05.03.2004 №1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования»; приказа Министерства России от 01.02.2012 №74 «О внесении изменений в федеральный базисный учебный план и примерные учебные планы для образовательных учреждений Российской Федерации, реализующих программы общего образования, утвержденные приказом Министерства образования РФ от 09.03.2004 №1312 »; приказа Министерства образования и науки Российской Федерации (Минобрнауки России) от 31 марта 2014 г. № 253 "Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования";приказа Минобрнауки России от 17.12.2010 №1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования»; Устава образовательного учреждения; на основе программы автора Г.Я. Мякишева (Программы общеобразовательных учреждений. Физика. 10-11 классы / П.Г. Саенко, В.С. Данюшенков, О.В. Коршунова и др. – М.: Просвещение, 2013).
Рабочая программа предназначена для изучения физики в 11 классе средней общеобразовательной школы по учебнику Г. Я Мякишев,Б.Б Буховцев «Физика. 11 класс». Просвещение, 2013г. Учебник соответствует федеральному компоненту государственного образовательного стандарта основного общего образования по физике. Входит в федеральный перечень учебников, рекомендованных Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях, утвержденный приказом Министерства образования и науки Российской Федерации от 24 декабря 2010 г. № 2080. Учебник имеет гриф «Рекомендовано Министерством образования и науки Российской Федерации». Для изучения курса рекомендуется классно-урочная система с использованием различных технологий, форм, методов обучения.
Для изучения курса рекомендуется классно-урочная система с использованием различных технологий, форм, методов обучения.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, рекомендует последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет минимальный набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.
Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела « Физика как наука».
Методы научного познания природы».
Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.
Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.
Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания и волны, квантовая физика.
Общеучебные умения, навыки и способы деятельности
Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. В этом направлении приоритетами для школьного курса физики на этапе основного общего образования являются:
познавательная деятельность:
• использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
• формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
• овладение адекватными способами решения теоретических и экспериментальных задач;
• приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
информационно-коммуникативная деятельность:
• владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
• использование для решения познавательных и коммуникативных задач различных источников информации.
рефлексивная деятельность:
• владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
• организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.
абочая программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Общеучебные умения, навыки и способы деятельности
Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:
Познавательная деятельность:
использование для познания окружающего мира различных естественно-научных методов: наблюдения, измерения, эксперимента, моделирования;
формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
овладение адекватными способами решения теоретических и экспериментальных задач;
приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
Информационно-коммуникативная деятельность:
владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;
использование для решения познавательных и коммуникативных задач различных источников информации.
Рефлексивная деятельность:
владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.
Курс физики в программе структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания и волны, квантовая физика.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта на базовом уровне; дает распределение учебных часов по разделам и последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся; определяет набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.
Используемые технологии. При организации процесса обучения в рамках данной программы предполагается применение следующих педагогических технологий обучения: технология развития критического мышления, проблемного обучения, информационно-коммуникативных технологий, игровых, технологий КСО. Внеурочная деятельность по предмету предусматривается в формах: учебно-исследовательской, проектной, олимпиадной деятельности.
Формы, методы и средства обучения.
В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. Используются следующие формы обучения: учебные занятия, экскурсии, наблюдения, опыты, эксперименты, работа с учебной и дополнительной литературой, анализ, мониторинг, исследовательская работа, презентация. Определенное место в овладении данным курсом отводится самостоятельной работе: подготовка творческих работ, сообщений, рефератов, проектов.
Роль учебного предмета в формировании компетенций:
Реальным объектом в сфере формирования компетенций выступает сам ученик. Он овладевает способами деятельности в собственных интересах и возможностях, что выражаются в его непрерывном самопознании, развитии.
1. Ценностно-смысловые компетенции- обеспечить механизм самоопределения ученика в ситуациях учебной деятельности. От этого зависит индивидуальная образовательная траектория ученика.
2. Общекультурные компетенции- обеспечить механизм освоения учеником культурологического и всечеловеческого понимания мира.
3. Учебно-познавательные компетенции- обеспечить совокупность компетенций ученика в сфере самостоятельной познавательной деятельности, включающей элементы логической, общеучебной деятельности, соотнесенной с реальными познаваемыми объектами.
4. Информационные компетенции- при помощи реальных объектов (компьютер, принтер, модем, копир) и информационных технологий (аудио - видеозапись, электронная почта, СМИ, Интернет), формировать умения самостоятельно искать, анализировать и отбирать необходимую информацию, организовывать, преобразовывать, сохранять и передавать ее; учить умению ориентироваться в потоке информации и способах поиска информации, находить информацию о биологических объектах в различных источниках (учебных текстах, справочниках, научно-популярных изданиях, компьютерных базах данных, ресурсах Интернет) и критически ее оценивать
5. Коммуникативные компетенции– включение необходимых способов взаимодействия с окружающими людьми и событиями, навыками работы в группе, владение различными социальными ролями в коллективе.
6. Компетенции личностного самосовершенствования- умение применять полученные знания в отношении собственного здоровья, использовать приобретенные знания и умения в практической деятельности и повседневной жизни.
Формы промежуточной и итоговой аттестации
Промежуточная аттестация проводится в форме:
тестов;
контрольных;
самостоятельных работ;
практических;
творческих работ;
проектов
Содержание программы учебного материала.
(68 часов, 2 часа в неделю)
Основы электродинамики (продолжение)
Индукция магнитного поля. Принцип суперпозиции магнитных полей. Сила Ампера. Сила Лоренца. Электроизмерительные приборы. Магнитные свойства вещества.
Магнитный поток. Закон электромагнитной индукции Фарадея. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность. Энергия магнитного поля.
Демонстрации
Магнитное взаимодействие токов.
Отклонение электронного пучка магнитным полем.
Магнитные свойства вещества.
Магнитная запись звука.
Зависимость ЭДС индукции от скорости изменения магнитного потока.
Зависимость ЭДС самоиндукции от скорости изменения силы тока и индуктивности проводника.
Лабораторные работы
1.Наблюдения действия магнитного поля на ток
2.Изучения явления электромагнитной индукции
Колебания и
Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Переменный ток. Действующие значения силы тока и напряжения. Конденсатор и катушка в цепи переменного тока. Активное сопротивление. Электрический резонанс. Трансформатор. Производство, передача и потребление электрической энергии.
Электромагнитное поле. Вихревое электрическое поле. Скорость электромагнитных волн. Свойства электромагнитных волн. Принципы радиосвязи и телевидения.
Демонстрации
Свободные электромагнитные колебания.
Осциллограмма переменного тока.
Конденсатор в цепи переменного тока.
Катушка в цепи переменного тока.
Резонанс в последовательной цепи переменного тока.
Сложение гармонических колебаний.
Генератор переменного тока.
Трансформатор.
Излучение и прием электромагнитных волн.
Лабораторные работы
1.Определение ускорения свободного падения при помощи маятника
Оптика
Свет как электромагнитная волна. Скорость света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поляризация света. Законы отражения и преломления света. Полное внутреннее отражение. Дисперсия света. Различные виды электромагнитных излучений, их свойства и практические применения. Формула тонкой линзы. Оптические приборы. Разрешающая способность оптических приборов.
Постулаты специальной теории относительности Эйнштейна. Пространство и время в специальной теории относительности. Полная энергия. Энергия покоя. Релятивистский импульс. Связь полной энергии с импульсом и массой тела. Дефект массы и энергия связи.
Демонстрации
Отражение и преломление электромагнитных волн.
Интерференция и дифракция электромагнитных волн.
Поляризация электромагнитных волн.
Модуляция и детектирование высокочастотных электромагнитных колебаний.
Детекторный радиоприемник.
Интерференция света.
Дифракция света.
Полное внутреннее отражение света.
Получение спектра с помощью призмы.
Получение спектра с помощью дифракционной решетки.
Поляризация света.
Спектроскоп.
Фотоаппарат.
Проекционный аппарат.
Микроскоп.
Лупа
Телескоп
Лабораторные работы
1.Измерение показателя преломления стекла.
2.Определение оптической силы и фокусного расстояния собирающей линзы.
3. Измерение длины световой волны.
Квантовая физика
Гипотеза М.Планка о квантах. Фотоэффект. Опыты А.Г.Столетова. Уравнение А.Эйнштейна для фотоэффекта. Фотон. Опыты П.Н.Лебедева и С.И.Вавилова.
Планетарная модель атома. Квантовые постулаты Бора и линейчатые спектры. Гипотеза де Бройля о волновых свойствах частиц. Дифракция электронов. Соотношение неопределенностей Гейзенберга. Спонтанное и вынужденное излучение света. Лазеры.
Модели строения атомного ядра. Ядерные силы. Нуклонная модель ядра. Энергия связи ядра. Ядерные спектры. Ядерные реакции. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез. Радиоактивность. Дозиметрия. Закон радиоактивного распада. Статистический характер процессов в микромире. Элементарные частицы. Фундаментальные взаимодействия. Законы сохранения в микромире.
Демонстрации
Фотоэффект.
Линейчатые спектры излучения.
Лазер.
Счетчик ионизирующих частиц.
Камера Вильсона.
Фотографии треков заряженных частиц.
Лабораторные работы
1.Наблюдение сплошного линейчатых спектров
Строение Вселенной
Солнечная система. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звезд. Наша Галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной. Применимость законов физики для объяснения природы космических объектов. «Красное смещение» в спектрах галактик. Современные взгляды на строение и эволюцию Вселенной.
Демонстрации
1. Фотографии Солнца с пятнами и протуберанцами.
2. Фотографии звездных скоплений и газопылевых туманностей.
3. Фотографии галактик.
Наблюдения
1. Наблюдение солнечных пятен.
2. Обнаружение вращения Солнца.
3. Наблюдения звездных скоплений, туманностей и галактик.
4. Компьютерное моделирование движения небесных тел.
Требования к уровню подготовки
В результате изучения курса физики ученик должен:
Знать/понимать:
Смысл понятий: физическое явление, физический закон, гипотеза, теория, вещество, поле, взаимодействие, электромагнитное поле, волна, фотон, ионизирующее излучение, звезда, Вселенная
Смысл физических величин: скорость, ускорение, масса, элементарный электрический заряд, работа выхода, показатель преломления сред
Уметь:
Описывать и объяснять физические явления: электромагнитной индукции, распространение электромагнитных волн,, волновые свойства света, излучение и поглощение света атомами, фотоэффект.
Отличать гипотезы от научных теорий
Делать выводы на основе экспериментальных данных
Приводить примеры, показывающие, что наблюдение и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов, физическая теория дает возможность объяснять не только известные явления природы и научные факты, но и предсказывать еще неизвестные явления
Воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, интернет, научно-популярных статьях
Использовать приобретенные знания и умения в повседневной жизни.
Литература для учителя:
Государственный образовательный стандарт общего образования. Официальные документы в образовании.
Учебник: Мякишев Г.Я., Буховцев Б.Б., Сотский Н. Н.Физика:
Учеб.для11 кл. общеобразовательных учреждений. – М.: Просвещение, 2013
Рымкевич А.П., Рымкевич П.А. Сборник задач по физике .- М.: Просвещение
Кирик Л.А., Генденштейн Л.Э., Гельфгат И.М. Задачи по физике 10 – 11 класс. – М. : Илекса, 2013.
Каменецкий С.Е., Орехов В.П.. Методика решения задач по физике в средней школе. – М.: Просвещение, 2012.
Кирик Л.А., Генденштейн Л.Э., Дик Ю.И. Физика 11 класс. Методические материалы для учителя. Под редакцией В.А. Орлова. М.: Илекса, 2012
Коровин В.А., Демидова М.Ю. Методический справочник учителя физики. – Мнемозина,
Сауров Ю.А. Физика в 11 классе: Модели уроков: Кн. Для учителя. – М.: Просвещение, 2013
Программы общеобразовательных учреждений. Физика. 10-11 классы / П.Г. Саенко, В.С. Данюшенков, О.В. Коршунова и др. – М.: Просвещение, 2010.
Инструктивно-методическое письмо Бел ИПКиППС «О преподавании предмета «Физика» в общеобразовательных учреждениях Белгородской области в 2012-2013 учебном году»
Литература для учащихся:
Учебник: Мякишев Г.Я., Буховцев Б.Б., Сотский Н. Н.Физика:
Учеб.для11 кл. общеобразовательных учреждений. – М.: Просвещение, 2013
Рымкевич А.П., Рымкевич П.А. Сборник задач по физике .- М.: Просвещение
Кирик Л.А., Генденштейн Л.Э., Гельфгат И.М. Задачи по физике 10 – 11 класс. – М. : Илекса, 2013.
Сборники задач: Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.П. – 7-е изд., стереотип. – М.: Дрофа, 2013. – 192 с.
Дидактические материалы :
Контрольные работы по физике в 7-11 классах средней школы: Дидактический материал. Под ред. Э.Е. Эвенчик, С.Я. Шамаша. – М.: Просвещение,2013.
Кирик Л.А., Дик Ю.И.. Физика. 10,11 классах. Сборник заданий и самостоятельных работ.– М: Илекса, 2014.
Кирик Л. А.: Физика. Самостоятельные и контрольные работы. Механика. Молекулярная физика. Электричество и магнетизм. Москва-Харьков, Илекса, 2012г.
Интернет-ресурс
1. www. edu - "Российское образование" Федеральный портал.
2. www. school.edu - "Российский общеобразовательный портал".
3. www.school-collection.edu.ru/ Единая коллекция цифровых образовательных ресурсов
4. www.it-n.ru "Сеть творческих учителей"
5. www .festival.1september.ru Фестиваль педагогических идей "Открытый урок"
6Интернет-ресурсы: электронные образовательные ресурсы из единой коллекции цифровых образовательных ресурсов (http://school-collection.edu.ru/), каталога 7.Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/): информационные, электронные упражнения, мультимедиа ресурсы, электронные тесты
Виды и формы контроля.
Для оценки учебных достижений обучающихся используется:
текущий контроль в виде проверочных работ и тестов;
тематический контроль в виде контрольных работ;
итоговый контроль в виде контрольной работы и теста.
Формы и средства контроля.
Основными методами проверки знаний и умений учащихся по физике являются устный опрос, письменные и лабораторные работы. К письменным формам контроля относятся: физические диктанты, самостоятельные и контрольные работы, тесты. Основные виды проверки знаний – текущая и итоговая. Текущая проверка проводится систематически из урока в урок, а итоговая – по завершении темы (раздела), школьного курса. Ниже приведены контрольные работы для проверки уровня сформированности знаний и умений учащихся после изучения каждой темы и всего курса в целом.
Планируемый уровень подготовки выпускников на конец учебного года.
В соответствии с требованиями, установленными федеральными государственными стандартами, образовательной программой образовательного учреждения.
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни».